我有一个pandas数据框。在第一列中,它可以多次具有相同的值(换句话说,第一列中的值不是唯一的。)
每当我在第一列中有多个包含相同值的行时,我只想留下第三列中具有最大值的行。我几乎找到了解决方案:
import pandas
ls = []
ls.append({'c1':'a', 'c2':'a', 'c3':1})
ls.append({'c1':'a', 'c2':'c', 'c3':3})
ls.append({'c1':'a', 'c2':'b', 'c3':2})
ls.append({'c1':'b', 'c2':'b', 'c3':10})
ls.append({'c1':'b', 'c2':'c', 'c3':12})
ls.append({'c1':'b', 'c2':'a', 'c3':7})
df = pandas.DataFrame(ls, columns=['c1','c2','c3'])
print df
print '--------------------'
print df.groupby('c1').apply(lambda df:df.irow(df['c3'].argmax()))
结果我得到了:
c1 c2 c3
0 a a 1
1 a c 3
2 a b 2
3 b b 10
4 b c 12
5 b a 7
--------------------
c1 c2 c3
c1
a a c 3
b b c 12
我的问题是,我不希望c1
作为索引。我想要的是:
c1 c2 c3
1 a c 3
4 b c 12
答案 0 :(得分:4)
调用df.groupby(...).apply(foo)
时,foo
返回的对象类型会影响结果的合并方式。
如果你返回一个系列,那么系列的索引将成为最终结果的列,而groupby键将成为索引(有点令人费解)。
相反,如果您返回一个数据帧,最后的结果使用数据帧的指数作为指标值,以及数据帧的为列(非常合理的)。
的列因此,您可以通过将Series转换为DataFrame来安排所需的输出类型。
使用Pandas 0.13,您可以使用to_frame().T
方法:
def maxrow(x, col):
return x.loc[x[col].argmax()].to_frame().T
result = df.groupby('c1').apply(maxrow, 'c3')
result = result.reset_index(level=0, drop=True)
print(result)
产量
c1 c2 c3
1 a c 3
4 b c 12
在Pandas 0.12或更早版本中,相当于:
def maxrow(x, col):
ser = x.loc[x[col].idxmax()]
df = pd.DataFrame({ser.name: ser}).T
return df
顺便说一下,对于小型DataFrame,behzad.nouri's clever and elegant solution比我的更快。
的sort
从抬起的时间复杂O(n)
到O(n log n)
然而,所以它变得比当应用于较大DataFrames上面示出的to_frame
溶液慢。
以下是我对它进行基准测试的方法:
import pandas as pd
import numpy as np
import timeit
def reset_df_first(df):
df2 = df.reset_index()
result = df2.groupby('c1').apply(lambda x: x.loc[x['c3'].idxmax()])
result.set_index(['index'], inplace=True)
return result
def maxrow(x, col):
result = x.loc[x[col].argmax()].to_frame().T
return result
def using_to_frame(df):
result = df.groupby('c1').apply(maxrow, 'c3')
result.reset_index(level=0, drop=True, inplace=True)
return result
def using_sort(df):
return df.sort('c3').groupby('c1', as_index=False).tail(1)
for N in (100, 1000, 2000):
df = pd.DataFrame({'c1': {0: 'a', 1: 'a', 2: 'a', 3: 'b', 4: 'b', 5: 'b'},
'c2': {0: 'a', 1: 'c', 2: 'b', 3: 'b', 4: 'c', 5: 'a'},
'c3': {0: 1, 1: 3, 2: 2, 3: 10, 4: 12, 5: 7}})
df = pd.concat([df]*N)
df.reset_index(inplace=True, drop=True)
timing = dict()
for func in (reset_df_first, using_to_frame, using_sort):
timing[func] = timeit.timeit('m.{}(m.df)'.format(func.__name__),
'import __main__ as m ',
number=10)
print('For N = {}'.format(N))
for func in sorted(timing, key=timing.get):
print('{:<20}: {:<0.3g}'.format(func.__name__, timing[func]))
print
产量
For N = 100
using_sort : 0.018
using_to_frame : 0.0265
reset_df_first : 0.0303
For N = 1000
using_to_frame : 0.0358 \
using_sort : 0.036 / this is roughly where the two methods cross over in terms of performance
reset_df_first : 0.0432
For N = 2000
using_to_frame : 0.0457
reset_df_first : 0.0523
using_sort : 0.0569
(reset_df_first
是我尝试的另一种可能性。)
答案 1 :(得分:1)
试试这个:
df.sort('c3').groupby('c1', as_index=False).tail(1)