Bisplrep警告:不能再添加结

时间:2013-12-20 09:43:56

标签: python interpolation

我不明白Bisplrep插值模块的警告信息。警告说明:

不能再添加结,因为额外的结会重合 与旧的。可能原因:重量太小或太大 到一个不准确的数据点。 (FP> S) kx,ky = 3,3 nx,ny = 8,10 m = 911 fp = 3096907.966572 s = 0.000000

以下是我的代码中的示例问题:

感谢您的帮助,

安德烈亚斯

import numpy as np
from scipy.interpolate import bisplrep,bisplev
x=np.array([ 4.       ,  0.       ,  0.0100021,  0.0199966,  0.0299988,
    0.0400009,  0.0500031,  0.0599976,  0.0699997,  0.0800018,
    0.0899963,  0.0999985,  0.110001 ,  0.120003 ,  0.129997 ,
    0.139999 ,  0.150002 ,  0.160004 ,  0.169998 ,  0.18     ,
    0.190002 ,  0.199997 ,  0.209999 ,  0.220001 ,  0.230003 ,
    0.239998 ,  0.25     ,  0.260002 ,  0.269997 ,  0.279999 ,
    0.290001 ,  0.300003 ,  0.309998 ,  0.32     ,  0.330002 ,
    0.339996 ,  0.349998 ,  0.360001 ,  0.370003 ,  0.379997 ,
    0.389999 ,  0.400002 ,  0.410004 ,  0.419998 ,  0.43     ,
    0.440002 ,  0.449997 ,  0.459999 ,  0.470001 ,  0.480003 ,
    0.489998 ,  0.5      ,  0.510002 ,  0.519997 ,  0.529999 ,
    0.540001 ,  0.550003 ,  0.559998 ,  0.57     ,  0.580002 ,
    0.589996 ,  0.599998 ,  0.610001 ,  0.620003 ,  0.629997 ,
    0.639999 ,  0.650002 ,  0.660004 ,  0.669998 ,  0.68     ,
    0.690002 ,  0.699997 ,  0.709999 ,  0.720001 ,  0.730003 ,
    0.739998 ,  0.75     ,  0.760002 ,  0.769997 ,  0.779999 ,
    0.790001 ,  0.800003 ,  0.809998 ,  0.82     ,  0.830002 ,
    0.839996 ,  0.849998 ,  0.860001 ,  0.870003 ,  0.879997 ,
    0.889999 ,  0.900002 ,  0.910004 ,  0.919998 ,  0.93     ,
    0.940002 ,  0.949997 ,  0.959999 ,  0.970001 ,  0.980003 ,
    0.989998 ,  1.       ,  1.01     ,  1.02     ,  1.03     ,
    1.04     ,  1.05     ,  1.06     ,  1.07     ,  1.08     ,
    1.09     ,  1.1      ,  1.11     ,  1.12     ,  1.13     ,
    1.14     ,  1.15     ,  1.16     ,  1.17     ,  1.18     ,
    1.19     ,  1.2      ,  1.21     ,  1.22     ,  1.23     ,
    1.24     ,  1.25     ,  1.26     ,  1.27     ,  1.28     ,
    1.29     ,  1.3      ,  1.31     ,  1.32     ,  1.33     ,
    1.34     ,  1.35     ,  1.36     ,  1.37     ,  1.38     ,
    1.39     ,  1.4      ,  1.41     ,  1.42     ,  1.43     ,
    1.44     ,  1.45     ,  1.46     ,  1.47     ,  1.48     ,
    1.49     ,  1.5      ,  1.51     ,  1.52     ,  1.53     ,
    1.54     ,  1.55     ,  1.56     ,  1.57     ,  1.58     ,
    1.59     ,  1.6      ,  1.61     ,  1.62     ,  1.63     ,
    1.64     ,  1.65     ,  1.66     ,  1.67     ,  1.68     ,
    1.69     ,  1.7      ,  1.71     ,  1.72     ,  1.73     ,
    1.74     ,  1.75     ,  1.76     ,  1.77     ,  1.78     ,
    1.79     ,  1.8      ,  1.81     ,  1.82     ,  1.83     ,
    1.84     ,  1.85     ,  1.86     ,  1.87     ,  1.88     ,
    1.89     ,  1.9      ,  1.91     ,  1.92     ,  1.93     ,
    1.94     ,  1.95     ,  1.96     ,  1.97     ,  1.98     ,
    1.99     ,  2.       ,  2.01     ,  2.02     ,  2.03     ,
    2.04     ,  2.05     ,  2.06     ,  2.07     ,  2.08     ,
    2.09     ,  2.1      ,  2.11     ,  2.12     ,  2.13     ,
    2.14     ,  2.15     ,  2.16     ,  2.17     ,  2.18     ,
    2.19     ,  2.2      ,  2.21     ,  2.22     ,  2.23     ,
    2.24     ,  2.25     ,  2.26     ,  2.27     ,  2.28     ,
    2.29     ,  2.3      ,  2.31     ,  2.32     ,  2.33     ,
    2.34     ,  2.35     ,  2.36     ,  2.37     ,  2.38     ,
    2.39     ,  2.4      ,  2.41     ,  2.42     ,  2.43     ,
    2.44     ,  2.45     ,  2.46     ,  2.47     ,  2.48     ,
    2.49     ,  2.5      ,  2.51     ,  2.52     ,  2.53     ,
    2.54     ,  2.55     ,  2.56     ,  2.57     ,  2.58     ,
    2.59     ,  2.6      ,  2.61     ,  2.62     ,  2.63     ,
    2.64     ,  2.65     ,  2.66     ,  2.67     ,  2.68     ,
    2.69     ,  2.7      ,  2.71     ,  2.72     ,  2.73     ,
    2.74     ,  2.75     ,  2.76     ,  2.77     ,  2.78     ,
    2.79     ,  2.8      ,  2.81     ,  2.82     ,  2.83     ,
    2.84     ,  2.85     ,  2.86     ,  2.87     ,  2.88     ,
    2.89     ,  2.9      ,  2.91     ,  2.92     ,  2.93     ,
    2.94     ,  2.95     ,  2.96     ,  2.97     ,  2.98     ,
    2.99     ,  3.       ,  3.01     ,  3.02     ,  3.03     ,
    3.04     ,  3.05     ,  3.06     ,  3.07     ,  3.08     ,
    3.09     ,  3.1      ,  3.11     ,  3.12     ,  3.13     ,
    3.14     ,  3.15     ,  3.16     ,  3.17     ,  3.18     ,
    3.19     ,  3.2      ,  3.21     ,  3.22     ,  3.23     ,
    3.24     ,  3.25     ,  3.26     ,  3.27     ,  3.28     ,
    3.29     ,  3.3      ,  3.31     ,  3.32     ,  3.33     ,
    3.34     ,  3.35     ,  3.36     ,  3.37     ,  3.38     ,
    3.39     ,  3.4      ,  3.41     ,  3.42     ,  3.43     ,
    3.44     ,  3.45     ,  3.46     ,  3.47     ,  3.48     ,
    3.49     ,  3.5      ,  3.51     ,  3.52     ,  3.53     ,
    3.54     ,  3.55     ,  3.56     ,  3.57     ,  3.58     ,
    3.59     ,  3.6      ,  3.61     ,  3.62     ,  3.63     ,
    3.64     ,  3.65     ,  3.66     ,  3.67     ,  3.68     ,
    3.69     ,  3.7      ,  3.71     ,  3.72     ,  3.73     ,
    3.74     ,  3.75     ,  3.76     ,  3.77     ,  3.78     ,
    3.79     ,  3.8      ,  3.81     ,  3.82     ,  3.83     ,
    3.84     ,  3.85     ,  3.86     ,  3.87     ,  3.88     ,
    3.89     ,  3.9      ,  3.91     ,  3.92     ,  3.93     ,
    3.94     ,  3.95     ,  3.96     ,  3.97     ,  3.98     ,
    3.99     ,  4.       ])
y=np.array([ 14900.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.,  16710.,  16710.,  16710.,  16710.,
    16710.,  16710.,  16710.])
z=np.array([ -1.49380000e+01,   1.33526000e+03,   8.44982000e+02,
     6.28443000e+02,   5.24071000e+02,   4.55450000e+02,
     4.06332000e+02,   3.69142000e+02,   3.39825000e+02,
     3.16075000e+02,   2.96395000e+02,   2.79756000e+02,
     2.65453000e+02,   2.52976000e+02,   2.41942000e+02,
     2.32055000e+02,   2.23097000e+02,   2.14903000e+02,
     2.07344000e+02,   2.00311000e+02,   1.93727000e+02,
     1.87533000e+02,   1.81672000e+02,   1.76108000e+02,
     1.70808000e+02,   1.65750000e+02,   1.60908000e+02,
     1.56265000e+02,   1.51810000e+02,   1.47527000e+02,
     1.43405000e+02,   1.39438000e+02,   1.35617000e+02,
     1.31933000e+02,   1.28380000e+02,   1.24953000e+02,
     1.21645000e+02,   1.18450000e+02,   1.15366000e+02,
     1.12387000e+02,   1.09508000e+02,   1.06724000e+02,
     1.04033000e+02,   1.01432000e+02,   9.89140000e+01,
     9.64774000e+01,   9.41197000e+01,   9.18358000e+01,
     8.96233000e+01,   8.74798000e+01,   8.54031000e+01,
     8.33888000e+01,   8.14352000e+01,   7.95405000e+01,
     7.77009000e+01,   7.59147000e+01,   7.41802000e+01,
     7.24957000e+01,   7.08580000e+01,   6.92658000e+01,
     6.77180000e+01,   6.62116000e+01,   6.47452000e+01,
     6.33180000e+01,   6.19287000e+01,   6.05748000e+01,
     5.92551000e+01,   5.79688000e+01,   5.67152000e+01,
     5.54919000e+01,   5.42982000e+01,   5.31336000e+01,
     5.19961000e+01,   5.08851000e+01,   4.97999000e+01,
     4.87398000e+01,   4.77033000e+01,   4.66898000e+01,
     4.56990000e+01,   4.47294000e+01,   4.37805000e+01,
     4.28519000e+01,   4.19432000e+01,   4.10529000e+01,
     4.01810000e+01,   3.93271000e+01,   3.84900000e+01,
     3.76693000e+01,   3.68649000e+01,   3.60765000e+01,
     3.53029000e+01,   3.45439000e+01,   3.37994000e+01,
     3.30690000e+01,   3.23518000e+01,   3.16477000e+01,
     3.09567000e+01,   3.02778000e+01,   2.96108000e+01,
     2.89557000e+01,   2.83123000e+01,   2.76798000e+01,
     2.70581000e+01,   2.64472000e+01,   2.58464000e+01,
     2.52556000e+01,   2.46746000e+01,   2.41034000e+01,
     2.35414000e+01,   2.29885000e+01,   2.24447000e+01,
     2.19093000e+01,   2.13824000e+01,   2.08638000e+01,
     2.03536000e+01,   1.98511000e+01,   1.93563000e+01,
     1.88691000e+01,   1.83896000e+01,   1.79172000e+01,
     1.74518000e+01,   1.69936000e+01,   1.65421000e+01,
     1.60972000e+01,   1.56588000e+01,   1.52271000e+01,
     1.48015000e+01,   1.43820000e+01,   1.39688000e+01,
     1.35613000e+01,   1.31596000e+01,   1.27637000e+01,
     1.23735000e+01,   1.19886000e+01,   1.16092000e+01,
     1.12352000e+01,   1.08663000e+01,   1.05024000e+01,
     1.01435000e+01,   9.78981000e+00,   9.44077000e+00,
     9.09643000e+00,   8.75683000e+00,   8.42197000e+00,
     8.09150000e+00,   7.76547000e+00,   7.44392000e+00,
     7.12657000e+00,   6.81340000e+00,   6.50444000e+00,
     6.19968000e+00,   5.89884000e+00,   5.60196000e+00,
     5.30910000e+00,   5.01997000e+00,   4.73458000e+00,
     4.45296000e+00,   4.17511000e+00,   3.90076000e+00,
     3.62998000e+00,   3.36280000e+00,   3.09897000e+00,
     2.83849000e+00,   2.58140000e+00,   2.32773000e+00,
     2.07720000e+00,   1.82983000e+00,   1.58566000e+00,
     1.34471000e+00,   1.10673000e+00,   8.71778000e-01,
     6.39888000e-01,   4.10860000e-01,   1.84704000e-01,
    -3.85611000e-02,  -2.58929000e-01,  -4.76591000e-01,
    -6.91507000e-01,  -9.03643000e-01,  -1.11318000e+00,
    -1.32011000e+00,  -1.52441000e+00,  -1.72608000e+00,
    -1.92528000e+00,  -2.12199000e+00,  -2.31615000e+00,
    -2.50796000e+00,  -2.69741000e+00,  -2.88445000e+00,
    -3.06908000e+00,  -3.25147000e+00,  -3.43162000e+00,
    -3.60948000e+00,  -3.78505000e+00,  -3.95849000e+00,
    -4.12978000e+00,  -4.29886000e+00,  -4.46590000e+00,
    -4.63087000e+00,  -4.79376000e+00,  -4.95456000e+00,
    -5.11341000e+00,  -5.27028000e+00,  -5.42514000e+00,
    -5.57811000e+00,  -5.72920000e+00,  -5.87837000e+00,
    -6.02564000e+00,  -6.17111000e+00,  -6.31476000e+00,
    -6.45656000e+00,  -6.59664000e+00,  -6.73499000e+00,
    -6.87159000e+00,  -7.00641000e+00,  -7.13960000e+00,
    -7.27115000e+00,  -7.40101000e+00,  -7.52920000e+00,
    -7.65582000e+00,  -7.78084000e+00,  -7.90426000e+00,
    -8.02616000e+00,  -8.14653000e+00,  -8.26537000e+00,
    -8.38267000e+00,  -8.49852000e+00,  -8.61291000e+00,
    -8.72580000e+00,  -8.83731000e+00,  -8.94741000e+00,
    -9.05609000e+00,  -9.16336000e+00,  -9.26929000e+00,
    -9.37387000e+00,  -9.47708000e+00,  -9.57900000e+00,
    -9.67964000e+00,  -9.77897000e+00,  -9.87698000e+00,
    -9.97377000e+00,  -1.00693000e+01,  -1.01636000e+01,
    -1.02567000e+01,  -1.03486000e+01,  -1.04393000e+01,
    -1.05288000e+01,  -1.06171000e+01,  -1.07043000e+01,
    -1.07904000e+01,  -1.08753000e+01,  -1.09592000e+01,
    -1.10419000e+01,  -1.11235000e+01,  -1.12041000e+01,
    -1.12836000e+01,  -1.13621000e+01,  -1.14395000e+01,
    -1.15159000e+01,  -1.15913000e+01,  -1.16656000e+01,
    -1.17390000e+01,  -1.18115000e+01,  -1.18829000e+01,
    -1.19534000e+01,  -1.20229000e+01,  -1.20915000e+01,
    -1.21592000e+01,  -1.22260000e+01,  -1.22918000e+01,
    -1.23568000e+01,  -1.24209000e+01,  -1.24841000e+01,
    -1.25464000e+01,  -1.26079000e+01,  -1.26686000e+01,
    -1.27284000e+01,  -1.27874000e+01,  -1.28455000e+01,
    -1.29029000e+01,  -1.29595000e+01,  -1.30153000e+01,
    -1.30702000e+01,  -1.31245000e+01,  -1.31779000e+01,
    -1.32306000e+01,  -1.32826000e+01,  -1.33339000e+01,
    -1.33844000e+01,  -1.34341000e+01,  -1.34832000e+01,
    -1.35316000e+01,  -1.35793000e+01,  -1.36262000e+01,
    -1.36725000e+01,  -1.37182000e+01,  -1.37631000e+01,
    -1.38075000e+01,  -1.38511000e+01,  -1.38942000e+01,
    -1.39365000e+01,  -1.39783000e+01,  -1.40194000e+01,
    -1.40599000e+01,  -1.40999000e+01,  -1.41392000e+01,
    -1.41779000e+01,  -1.42161000e+01,  -1.42536000e+01,
    -1.42906000e+01,  -1.43270000e+01,  -1.43629000e+01,
    -1.43982000e+01,  -1.44330000e+01,  -1.44672000e+01,
    -1.45009000e+01,  -1.45340000e+01,  -1.45667000e+01,
    -1.45988000e+01,  -1.46304000e+01,  -1.46615000e+01,
    -1.46921000e+01,  -1.47222000e+01,  -1.47518000e+01,
    -1.47810000e+01,  -1.48096000e+01,  -1.48378000e+01,
    -1.48656000e+01,  -1.48928000e+01,  -1.49196000e+01,
    -1.49460000e+01,  -1.49719000e+01,  -1.49974000e+01,
    -1.50224000e+01,  -1.50470000e+01,  -1.50711000e+01,
    -1.50949000e+01,  -1.51182000e+01,  -1.51411000e+01,
    -1.51636000e+01,  -1.51857000e+01,  -1.52074000e+01,
    -1.52287000e+01,  -1.52496000e+01,  -1.52702000e+01,
    -1.52903000e+01,  -1.53101000e+01,  -1.53294000e+01,
    -1.53484000e+01,  -1.53671000e+01,  -1.53853000e+01,
    -1.54032000e+01,  -1.54208000e+01,  -1.54379000e+01,
    -1.54548000e+01,  -1.54713000e+01,  -1.54874000e+01,
    -1.55032000e+01,  -1.55186000e+01,  -1.55337000e+01,
    -1.55484000e+01,  -1.55629000e+01,  -1.55769000e+01,
    -1.55907000e+01,  -1.56041000e+01,  -1.56172000e+01,
    -1.56299000e+01,  -1.56423000e+01,  -1.56544000e+01,
    -1.56662000e+01,  -1.56776000e+01,  -1.56886000e+01,
    -1.56994000e+01,  -1.57098000e+01,  -1.57198000e+01,
    -1.57295000e+01,  -1.57388000e+01,  -1.57478000e+01,
    -1.57563000e+01,  -1.57645000e+01,  -1.57723000e+01,
    -1.57797000e+01,  -1.57866000e+01,  -1.57930000e+01,
    -1.57990000e+01,  -1.58045000e+01,  -1.58094000e+01,
    -1.58137000e+01,  -1.58173000e+01,  -1.58203000e+01,
    -1.58225000e+01,  -1.58238000e+01,  -1.58243000e+01,
    -1.58236000e+01,  -1.58218000e+01,  -1.58185000e+01,
    -1.58135000e+01,  -1.58060000e+01,  -1.57946000e+01,
    -1.57734000e+01,  -1.57406000e+01,  -1.57455000e+01])
bisplrep(x,y,z,w=None, kx=3,ky=3,s=0,task=0)

1 个答案:

答案 0 :(得分:0)

也许使用

from scipy.interpolate import LinearNDInterpolator
xy = np.asarray([(i,j) for i, j in zip(x,y)]) # Attain a list of all pairs of the elements of x and y.
InterpolatedObject = LinearNDInterpolator(xy, z) # This yields an interpolated object of the data-points. 

对你有帮助。这给出了一个完全符合数据点的分段线性插值。

然后,您可以通过

调用插值
SamplingListx = np.linspace(min(x),max(x),1000)
SamplingListy = np.linspace(min(y),max(y),1000)

SamplingArrayz = np.asarray([[InterpolatedObject(i,j) for j in SamplingListy] for i in SamplingListy])

这将评估细网格点处的插值对象并返回相应的数组。