Hadoop分布式缓存

时间:2013-12-20 06:56:22

标签: java hadoop distributed

我正在尝试使用hadoop分布式缓存,以便使用地图保留两个输入源。

因此,我制作一个原型,连接两个输入文件以使用分布式缓存,这个问题成功运行。

但是,如果我编写包含多个mapreduce作业的程序,则分布式缓存api不起作用,并且在程序中,先前作业的输出在下一个作业中用作两个输入文件之一。 但是,分布式缓存文件不会发出任何内容。

这是我的工作机会。

public int run(String[] args) throws Exception {
    Path InputPath = new Path(args[0]);
    Path Inter = new Path("Inters") ;//new Path(args[1]);
    Path OutputPath = new Path(args[1]);        

  JobConf conf = new JobConf(getConf(), Temp.class);
    FileSystem fs = FileSystem.get(getConf());
    conf.setJobName("wordcount");

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class);

    conf.setMapperClass(FirstMap.class);
    //conf.setCombinerClass(Reduce.class);
    conf.setReducerClass(Reduce.class);

    conf.setMapOutputKeyClass(Text.class);
    conf.setMapOutputValueClass(IntWritable.class);
    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);
    //conf.setNumReduceTasks(0);


    //20131220 - to deal with paths as variables



    //fs.delete(Inter);

    //DistributedCache.addCacheFile(new Path(args[2]).toUri(), conf);
    FileInputFormat.setInputPaths(conf, InputPath);
    FileOutputFormat.setOutputPath(conf, Inter);
    conf.set("threshold", args[2]);
    JobClient.runJob(conf);


    // start job 2

    JobConf conf2 = new JobConf(getConf(), Temp.class);
    conf2.setJobName("shit");

    conf2.setMapOutputKeyClass(Text.class);
    conf2.setMapOutputValueClass(IntWritable.class);

    conf2.setOutputKeyClass(Text.class);
    conf2.setOutputValueClass(IntWritable.class);

    conf2.setMapperClass(Map.class);
    //conf.setCombinerClass(Reduce.class);
    conf2.setReducerClass(Reduce.class);
    conf2.setNumReduceTasks(0);
    conf2.setInputFormat(TextInputFormat.class);
    conf2.setOutputFormat(TextOutputFormat.class);


    //DistributedCache.addFileToClassPath(Inter, conf2);
    //DistributedCache.addCacheFile(Inter.toUri(), conf2);
    String InterToStroing = Inter.toString();
    Path Inters = new Path(InterToStroing);

    DistributedCache.addCacheFile(new Path(args[3]).toUri(), conf2);
    FileInputFormat.setInputPaths(conf2, InputPath);
    FileOutputFormat.setOutputPath(conf2, OutputPath);

    conf2.set("threshold", "0");
    JobClient.runJob(conf2);

    return 0;
}

此外,这是处理分布式缓存的map函数。

public static class Map extends MapReduceBase implements
        Mapper<LongWritable, Text, Text, IntWritable> {

    static enum Counters {
        INPUT_WORDS
    }

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    private boolean caseSensitive = true;
    private Set<String> patternsToSkip = new HashSet<String>();

    private long numRecords = 0;
    private String inputFile;
    private Iterator<String> Iterator;

    private Path[] localFiles;
    public void configure (JobConf job) {
        try {
            localFiles = DistributedCache.getLocalCacheFiles(job);
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        for (Path patternsFile : localFiles) {
            parseSkipFile(patternsFile);
        }
    }
    private void parseSkipFile(Path patternsFile) {
        try {
            BufferedReader fis = new BufferedReader(new FileReader(
                    patternsFile.toString()));
            String pattern = null;
            while ((pattern = fis.readLine()) != null) {
                //String [] StrArr = pattern.split(" ");
                System.err.println("Pattern : " + pattern );
                patternsToSkip.add(pattern);
            }
        } catch (IOException ioe) {
            System.err
                    .println("Caught exception while parsing the cached file '"
                            + patternsFile
                            + "' : "
                            + StringUtils.stringifyException(ioe));
        }
    }

    public void map(LongWritable key, Text value,
            OutputCollector<Text, IntWritable> output, Reporter reporter)
            throws IOException {
        //output.collect(value, one);


        ArrayList<String> temp = new ArrayList<String>();

        String line = value.toString();

        Iterator = patternsToSkip.iterator();


        while (Iterator.hasNext()) {
            output.collect(new Text(Iterator.next()+"+"+value.toString()),one);
        }
        /*while (Iterator.hasNext()) {
            output.collect(new Text(Iterator.next().toString()), one);
        }*/
        //output.collect(value, one);


    }
}

有谁处理过这个问题?

2 个答案:

答案 0 :(得分:1)

这是我练习hadoop所做的事情。它包含多路径输入以及链接作业,在大学计算机实验室中进行减少侧连接。

public class StockJoinJob extends Configured  {

public static class KeyPartitioner extends Partitioner<TextIntPair, TextLongIntPair> {
@Override
public int getPartition(TextIntPair key, TextLongIntPair value, int numPartitions) {
  return (key.getText().hashCode() & Integer.MAX_VALUE) % numPartitions;
}
}  

public static int runJob(String[] args) throws Exception {
      Configuration conf = new Configuration();
      Job job = new Job(conf);
  job.setJarByClass(StockJoinJob.class);

  Path nasdaqPath = new Path(args[0]);
  Path listPath = new Path(args[1]);
  Path outputPath = new Path(args[2]+"-first");

  MultipleInputs.addInputPath(job, listPath, TextInputFormat.class, CompanyMapper.class);
  MultipleInputs.addInputPath(job, nasdaqPath,
  StockInputFormat.class, StockMapper.class);
  FileOutputFormat.setOutputPath(job, outputPath);

  job.setPartitionerClass(KeyPartitioner.class);
  job.setGroupingComparatorClass(TextIntPair.FirstComparator.class);

  job.setMapOutputKeyClass(TextIntPair.class);
  job.setMapOutputValueClass(TextLongIntPair.class);
  job.setReducerClass(JoinReducer.class);

  job.setOutputKeyClass(TextIntPair.class);
  job.setOutputValueClass(TextLongPair.class);

  return job.waitForCompletion(true) ? 0 : 1;
    }

    public static int runJob2(String[] args) throws Exception {
  //need first comparator like previous job
  Configuration conf = new Configuration();
      Job job = new Job(conf);

  job.setJarByClass(StockJoinJob.class);
  job.setReducerClass(TotalReducer.class);
      job.setMapperClass(TotalMapper.class);
  Path firstPath = new Path(args[2]+"-first");
  Path outputPath = new Path(args[2]+"-second");

  //reducer output//
  job.setOutputKeyClass(TextIntPair.class);
  job.setOutputValueClass(TextLongPair.class);

  //mapper output//
  job.setMapOutputKeyClass(TextIntPair.class);
  job.setMapOutputValueClass(TextIntPair.class);      

  //etc            
  FileInputFormat.setInputPaths(job, firstPath);
  FileOutputFormat.setOutputPath(job, outputPath);
  outputPath.getFileSystem(conf).delete(outputPath, true);

  return job.waitForCompletion(true) ? 0 : 1;
    }



public static void main(String[] args) throws Exception {
int firstCode = runJob(args);
if(firstCode==0){
 int secondCode =runJob2(args);
  System.exit(secondCode);
 }


 }
 }

答案 1 :(得分:0)

我不确定问题到底是什么(也许你应该改一下),但我建议你阅读Yahoo tutorial on Chaining Jobs。我在这里看到两种选择:

  • 如果您执行完全相同的地图而不关心执行的顺序(换句话说,两个作业可以并行执行),我建议创建一个具有两个输入路径的作业。您可以使用以下命令执行此操作:

    FileInputFormat.setInputPaths(conf, new Path(args[0])); FileInputFormat.addInputPath(conf, new Path(args[1]));

  • 我认为您需要在新的“链”驱动程序中添加两个单独的作业驱动程序,然后添加依赖项(例如,第二个作业取决于第一个作业,因此应该在第一个作业完成时执行)。然后可以在第二个作业的驱动程序中声明分布式缓存。我希望这有帮助......