假设您有一个数字向量,例如: 0,4,2,3,1,0,6,4
找到此列表中未重复的第一个数字。所以对于例子来说,答案是2。 假设:
我提供了两个我想到过的答案,我认为名为ArraySolution
的函数是最好的,但是任何人都可以想到更快更好的解释:)
由于
#include <iostream>
#include <vector>
#include <time.h>
#include <map>
void FillVectorRandomly(std::vector<int>& numbers, int size, int lowerRange, int higherRange)
{
if(size == 0)
return;
if(lowerRange < 0)
return;
if(higherRange < lowerRange)
{
int temp = lowerRange;
lowerRange = higherRange;
higherRange = temp;
}
srand(time(NULL));
int dif = higherRange - lowerRange+1;
for(int i = 0; i < size; ++i)
numbers.push_back((rand() % dif) + lowerRange);
}
int MapSolution(std::vector<int>& numbers)
{
std::map<int, int> mapNumbers;
for(int i = 0; i < numbers.size(); ++i)
{
mapNumbers[numbers[i]] = mapNumbers[numbers[i]] + 1;
}
for(int i = 0; i < numbers.size(); ++i)
{
if(mapNumbers[numbers[i]] == 1)
return numbers[i];
}
return -1;
}
int ArraySolution(std::vector<int>& numbers)
{
for(int i = 0; i < numbers.size(); ++i)
{
if(numbers[i] != -1)
{
int count = 0;
for(int j = i+1; j < numbers.size(); ++j)
{
if(numbers[j] == numbers[i])
{
numbers[j] = -1;
count++;
}
}
if(count == 0)
return numbers[i];
}
numbers[i] = -1;
}
}
int main()
{
std::vector<int> numbers;
FillVectorRandomly(numbers, 4, 0, 5);
int m = MapSolution(numbers);
int a = ArraySolution(numbers);
return 0;
}
答案 0 :(得分:7)
MapSolution
是O(N log(N)),因为有N个插入O(logN) - 大小也是O(NlogN)
ArraySolution
似乎是O(N ^ 2),因为N的某些部分有N个循环 - 但K可能是好的
以下是O(N),其大小为O(1),因为查找是固定的:
int lookup_solution(std::vector<int>& numbers)
{
int lookup[10000+1] = {};
for (int i=0; i<numbers.size(); ++i)
{
lookup[numbers[i]]++;
}
for (int i=0; i<numbers.size(); ++i)
{
if (lookup[numbers[i]] == 1)
{
return numbers[i];
}
}
return -1;
}
它利用了输入范围仅为10000的事实,因此有N个插入为O(1):
•提供的数字介于0 - 10,000之间
编辑:正如评论(我的版本)中所述,对于大型输入向量:
int lookup_solution(std::vector<int>& numbers)
{
static const int max_value=10000;
int count[max_value+1] = {}; // counts occurrences of index
int order[max_value+1]; // keeps order of values seen
int index[max_value+1]; // index into order for where order is found
int order_index=0;
for (int i=0; i<numbers.size(); ++i)
{
int n=numbers[i];
int seen=count[n];
if (seen == 0) // first time
{
count[n]=1;
order[order_index]=n;
index[n]=order_index;
order_index++;
}
else if (seen == 1) // not eligible (-1)
{
count[n]=-1; // use -1 since it might be in a register
order[index[n]]=-1;
} // else do nothing
}
for (int i = 0; i < order_index; ++i)
{
if (order[i] != -1)
{
return order[i];
}
}
return -1;
}