将向量分解为列表的一般方法是什么?

时间:2013-12-17 06:42:11

标签: r list function vector repeat

假设我们有一个向量:

x <- c(1,1,1,2,2,2,2,2,4,4,2,2,2,2)

什么是可以x并返回l的函数,其中l等于

[[1]]
[1] 1 1 1
[[2]]
[1] 2 2 2 2 2
[[3]]
[1] 4 4
[[4]]
[1] 2 2 2 2

4 个答案:

答案 0 :(得分:6)

使用rlerepsplit

a <- rle(x)
split(x, rep(seq_along(a$lengths), a$lengths))
# $`1`
# [1] 1 1 1
#
# $`2`
# [1] 2 2 2 2 2
#
# $`3`
# [1] 4 4
# 
# $`4`
# [1] 2 2 2 2

在此,rle计算输入向量的“运行长度”。结果是list lengthsvalues。我们只需要lengths,我们可以从中创建一个“分组”变量,我们可以split原始矢量。


更新:更大矢量的基准

我没有对while循环进行基准测试,因为使用这个长向量需要很长时间才能完成。

library(microbenchmark)
set.seed(1)
x <- sample(1:5, 1e5, replace = TRUE)
fun1 <- function() {
  a <- rle(x)
  split(x, rep(seq_along(a$lengths), a$lengths))
}
fun2 <- function() {
  splits = which(diff(x) != 0)
  split.locs = rbind(c(1, splits+1), c(splits, length(x)))
  apply(split.locs, 2, function(y) x[y[1]:y[2]])
}
fun3 <- function() split(x, c(0, cumsum(as.logical(diff(x)))))

microbenchmark(fun1(), fun2(), fun3(), times = 20)
# Unit: milliseconds
#    expr      min       lq   median       uq      max neval
#  fun1() 142.0386 147.7061 154.2853 158.0239 196.4665    20
#  fun2() 363.5707 386.0575 423.1791 444.4695 543.9427    20
#  fun3() 305.5331 316.0356 320.5203 329.7177 376.3236    20

答案 1 :(得分:3)

另一种可能性:

split(x, c(0, cumsum(as.logical(diff(x)))))

答案 2 :(得分:1)

这是一种不同的方法,它依赖于diffapply而不是while循环:

x <- c(1,1,1,2,2,2,2,2,4,4,2,2,2,2)

# Indices of ends of continuous regions (diff helps us find where neighboring elements differ)
splits = which(diff(x) != 0)

# Columns are ranges of continuous regions
split.locs = rbind(c(1, splits+1), c(splits, length(x)))

# Split based on ranges
apply(split.locs, 2, function(y) x[y[1]:y[2]])
# [[1]]
# [1] 1 1 1
# [[2]]
# [1] 2 2 2 2 2
# [[3]]
# [1] 4 4
# [[4]]
# [1] 2 2 2 2

答案 3 :(得分:-1)

这是一个黑客

    pure <- x
    out <- list()
    while(length(pure) > 0) {
        matches <- which(pure==pure[1])
        matches2 <- list()
        matches2[[1]] <- matches[1]
        for(i in 2:length(matches)) {
            if(matches[i] - matches[i-1] > 1) {
                break;
            }
            matches2[[i]] <- matches[i]
        }
        matches2 <- unlist(matches2)

        out[[length(out) + 1]] <- pure[matches2]
        pure <- pure[-matches2]
    }
            out