我有一个带有timedeltas列的DataFrame(实际上在检查时dtype是timedelta64[ns]
或<m8[ns]
),我想做一个split-combine-apply,但是timedelta列被删除:
import pandas as pd
import numpy as np
pd.__version__
Out[3]: '0.13.0rc1'
np.__version__
Out[4]: '1.8.0'
data = pd.DataFrame(np.random.rand(10, 3), columns=['f1', 'f2', 'td'])
data['td'] *= 10000000
data['td'] = pd.Series(data['td'], dtype='<m8[ns]')
data
Out[8]:
f1 f2 td
0 0.990140 0.948313 00:00:00.003066
1 0.277125 0.993549 00:00:00.001443
2 0.016427 0.581129 00:00:00.009257
3 0.048662 0.512215 00:00:00.000702
4 0.846301 0.179160 00:00:00.000396
5 0.568323 0.419887 00:00:00.000266
6 0.328182 0.919897 00:00:00.006138
7 0.292882 0.213219 00:00:00.008876
8 0.623332 0.003409 00:00:00.000322
9 0.650436 0.844180 00:00:00.006873
[10 rows x 3 columns]
data.groupby(data.index < 5).mean()
Out[9]:
f1 f2
False 0.492631 0.480118
True 0.435731 0.642873
[2 rows x 2 columns]
或者,强制pandas在'td'
列上尝试操作:
data.groupby(data.index < 5)['td'].mean()
---------------------------------------------------------------------------
DataError Traceback (most recent call last)
<ipython-input-12-88cc94e534b7> in <module>()
----> 1 data.groupby(data.index < 5)['td'].mean()
/path/to/lib/python3.3/site-packages/pandas-0.13.0rc1-py3.3-linux-x86_64.egg/pandas/core/groupby.py in mean(self)
417 """
418 try:
--> 419 return self._cython_agg_general('mean')
420 except GroupByError:
421 raise
/path/to/lib/python3.3/site-packages/pandas-0.13.0rc1-py3.3-linux-x86_64.egg/pandas/core/groupby.py in _cython_agg_general(self, how, numeric_only)
669
670 if len(output) == 0:
--> 671 raise DataError('No numeric types to aggregate')
672
673 return self._wrap_aggregated_output(output, names)
DataError: No numeric types to aggregate
但是,取列的平均值可以正常工作,因此应该可以进行数值运算:
data['td'].mean()
Out[11]:
0 00:00:00.003734
dtype: timedelta64[ns]
显然,在进行组合之前,它很容易被强制浮动,但我想我也可以尝试理解我遇到的问题。
答案 0 :(得分:1)
原来这是一个大熊猫问题,这种行为needs to be implemented in groupby.py
。
与此同时,请享受以浮动为单位的变通方法(以秒为单位):
data['td'] = [10**-9 * float(td) for td in data['td']]
答案 1 :(得分:0)
这对我有用:
data.groupby(data.index < 5)['td'].apply(lambda x: np.mean(x))
所以不要直接使用mean,median或者用lambda函数包装它。
不要问我为什么这样做。这并没有打破我通常使用熊猫的方式。 所以我认为它比列表推导更加用户友好。 ;)