我正在研究一些数据。从理论上讲,应该有两个高斯或多或少重叠。我发现,如果你不适合两个高斯但他们的分布函数,那么拟合数据效果最好。实际上,这种拟合似乎工作得相当好,但如果我回到数据的密度表示,它看起来有点连线。附上的图片代表他们自己。知道那里出了什么问题吗?
这是我的代码:`
import numpy as np
import scipy
import scipy.special
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import leastsq
from scipy.special import erf
def fitfunction(params,Bins):
amp_ratio, sigma1, sigma2, mu, Delta = params
return amp_ratio * 0.5 * (1 + erf((Bins -mu)/np.sqrt(2*sigma1**2))) + (1-amp_ratio)* 0.5 * (1 + erf((Bins - (mu + Delta))/np.sqrt(2*sigma2**2)))
def errorfunction(params, Reale_werte, Bins):
amp_ratio, sigma1, sigma2, mu, Delta = params
if(amp_ratio > 0) and (amp_ratio < 1):
return (Reale_werte - fitfunction(params, Bins))
else:
return (Reale_werte - fitfunction(params, Bins))*100
def Gaussians(params, Bins):
amp_ratio, sigma1, sigma2, mu, Delta = params
return amp_ratio/np.sqrt(2*np.pi*sigma1*sigma1) * np.exp(-((Bins-mu)**2) / np.sqrt(2*np.pi*sigma1*sigma1)) + (1-amp_ratio)/np.sqrt(2*np.pi*sigma2*sigma2) * np.exp(-((Bins-(mu + Delta))**2) / np.sqrt(2*np.pi*sigma2*sigma2))
def Gaussian1(params, Bins):
amp_ratio, sigma1, sigma2, mu, Delta = params
return amp_ratio/np.sqrt(2*np.pi*sigma1*sigma1) * np.exp(-((Bins-mu)**2) / np.sqrt(2*np.pi*sigma1*sigma1))
def Gaussian2(params, Bins):
amp_ratio, sigma1, sigma2, mu, Delta = params
return (1-amp_ratio)/np.sqrt(2*np.pi*sigma2*sigma2) * np.exp(-((Bins-(mu + Delta))**2) / np.sqrt(2*np.pi*sigma2*sigma2))
params = 0.25,1,10,1,5
params_init = 0.75, 0.8, 2.5, 1.2, 4
Bins = np.linspace(-4,18,1024)
data = Gaussians(params, Bins)
summe = np.zeros_like(Bins)
for i in range(Bins.shape[0]-1):
summe[i+1] = summe[i] + data[i]
summe = summe/summe[Bins.shape[0]-1]
params_result = leastsq(errorfunction, params_init, args=(summe, Bins))
plt.plot(Bins,fitfunction(params_result[0], Bins))
plt.plot(Bins, summe, 'x')
plt.savefig("Distribution.png")
plt.show()
print params_result[0]
plt.plot(Bins,Gaussians(params_result[0], Bins))
plt.plot(Bins, data, 'x')
plt.savefig("Gaussian.png")
plt.show()`
答案 0 :(得分:1)
我想知道kernel density estimation是否适合你的情况:
from scipy.stats import kde
import matplotlib.pyplot as plt
density = kde.gaussian_kde(x) # your data
xgrid = np.linspace(x.min(), x.max(), 1024)
plt.plot(xgrid, density(xgrid))
plt.show()