我正在使用DEAP库来最大化度量,我注意到每当我重新启动算法(它应该创建一个二进制值的随机列表--1和0)时,它就会生成相同的初始值。
我开始怀疑并复制了他们的basic DEAP example here并重新运行算法:
import array, random
from deap import creator, base, tools, algorithms
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 10)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def evalOneMax(individual):
return sum(individual),
toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoints)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.population(n=10)
NGEN=40
for gen in range(NGEN):
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = offspring
上面的代码就是他们的例子,但是人口和个人规模减少到10个。我运行算法5次,它产生了彼此的精确副本。我还添加了一个print语句来获得以下输出:
>python testGA.py
[1, 0, 1, 0, 1, 0, 1, 1, 1, 1]
Starting the Evolution Algorithm...
Evaluating Individual: [0, 1, 0, 1, 0, 1, 1, 1, 1, 0]
Evaluating Individual: [1, 1, 0, 1, 0, 1, 0, 1, 0, 0]
Evaluating Individual: [0, 0, 1, 0, 0, 1, 1, 0, 0, 1]
Evaluating Individual: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Evaluating Individual: [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
Evaluating Individual: [1, 0, 1, 1, 1, 0, 0, 1, 0, 0]
Evaluating Individual: [0, 1, 0, 0, 0, 1, 0, 0, 0, 1]
Evaluating Individual: [1, 1, 0, 1, 0, 1, 0, 1, 1, 1]
Evaluating Individual: [1, 1, 1, 1, 0, 0, 1, 0, 0, 0]
Evaluating Individual: [0, 0, 1, 1, 1, 1, 0, 1, 1, 1]
每次调用函数时都会生成此输出 - 按此顺序。它们完全相同。
我已经读过我不应该为random.randint函数播种,并且我通过编写一个基本脚本来测试它,该脚本只打印出10个随机整数的列表,范围为0到1.这个工作没问题,它只是当我通过DEAP提供它时似乎产生相同的值。
这是正常的吗?我怎样才能确保,当我运行算法时,每次都会得到不同的“个人”?
修改
很抱歉迟到的回复,这是我正在使用的完整资料来源:
import random, sys
from deap import creator, base, tools
class Max():
def __init__(self):
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
INDIVIDUAL_SIZE = 10
self.toolbox = base.Toolbox()
self.toolbox.register("attr_bool", random.randint, 0, 1)
self.toolbox.register("individual", tools.initRepeat, creator.Individual, self.toolbox.attr_bool, n=INDIVIDUAL_SIZE)
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
self.toolbox.register("mate", tools.cxTwoPoints)
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
self.toolbox.register("select", tools.selTournament, tournsize=3)
self.toolbox.register("evaluate", self.evaluate)
print self.main()
def evaluate(self, individual):
# Some debug code
print 'Evaluating Individual: ' + str(individual)
return sum(individual),
def main(self):
CXPB, MUTPB, NGEN = 0.5, 0.2, 40
random.seed(64)
pop = self.toolbox.population(n=10)
print "Starting the Evolution Algorithm..."
fitnesses = list(map(self.toolbox.evaluate, pop))
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
# ----------------------------------------------------------
# Killing the program here - just want to see the population created
sys.exit()
print "Evaluated %i individuals" % (len(pop))
for g in range(NGEN):
print "-- Generation %i --" % (g)
# Select the next genereation individuals
offspring = self.toolbox.select(pop, len(pop))
# Clone the selected individuals
offspring = list(map(self.toolbox.clone, offspring))
# Apply crossover and mutation on the offspring
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < CXPB:
self.toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < MUTPB:
self.toolbox.mutate(mutant)
del mutant.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(self.toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
print "\tEvaluated %i individuals" % (len(pop))
pop[:] = offspring
fits = [ind.fitness.values[0] for ind in pop]
length = len(pop)
mean = sum(fits) / length
sum2 = sum(x*x for x in fits)
std = abs(sum2 / length - mean**2)**0.5
print "\tMin %s" % (min(fits))
print "\tMax %s" % (max(fits))
print "\tAvg %s" % (mean)
print "\tStd %s" % (std)
class R_Test:
def __init__(self):
print str([random.randint(0, 1) for i in range(10)])
if __name__ == '__main__':
#rt = R_Test()
mx = Max()
R_Test类用于测试Python中的随机生成。我读here如果没有在Python中给出,动态调用种子,我想测试它。
我如何执行上述代码一直是这样的:
> python testGA.py
... the 10 outputs
> python testGA.py
... the exact same outputs
> python testGA.py
... the exact same outputs
> python testGA.py
... the exact same outputs
> python testGA.py
... the exact same outputs
显然,5次并不是一项艰苦的考验,但所有10个值连续5次相同的事实引发了一个红旗。
答案 0 :(得分:6)
问题是您在main函数中为随机数生成器指定了种子。只需注释一行:random.seed(64)
,每次执行程序时都会得到不同的结果。
在DEAP示例文件中,设置了特定种子,因为我们还将这些示例用作集成测试。如果在框架基本代码中进行修改后,示例的输出是不同的,我们想知道。它还允许我们根据每个示例所需的时间进行调整,并为我们的用户提供大概估算。这些基准测试的结果可在http://deap.gel.ulaval.ca/speed/在线获取。