更新:我甚至无法让this calculator重现this datasheet图8和图9中所示的SMBus PEC!
所以我将一个arduino与Melexis温度传感器连接起来,这样就可以了 - 除了我似乎无法让CRC检查工作。
我已经成功完成了读取操作(虽然我的软件忽略了数据包错误代码)但我已经尝试了很多CRC8的实现来检查PEC字节无济于事。我现在使用的代码块来自OneWire:
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
我重写了它只考虑一个字节:
int smbCRC(int message) {
uint8_t crc = 0;
uint8_t inbyte = message & 0xFF;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
return crc;
}
但它的CRC与MLX数据表的CRC不匹配(例如,来自here的图8)。当我用它的CRC8打印一个int时:
int message = 0x3aD2;
lcd.print(String(message,HEX) + " " + String(smbCRC(message),HEX));
我回来了“3ad2 eb”,虽然数据表说正确的PEC是0x30。我哪里错了?看起来这可能是由于CRC的错误实现或我对CRC输入的错误假设造成的,我不知道从哪里开始排除故障。
答案 0 :(得分:7)
我没有检查过你的CRC实现,但MLX数据表中有一个错误,或者至少写得不好。您必须包括用于PEC计算的所有I2C帧数据,而不仅仅是回复数据。 对于读字命令,您必须包括[SA_W,Command,SA_R,LSB,MSB]和写字命令[SA_W,Command,LSB,MSB]。
因此,对于他们的第一个例子,必须在[0xB4,0x07,0xB5,0xD2,0x3A]上进行计算,而不是仅在[0xD2,0x3A]上进行计算,这样就得到了预期的0x30。
这是一个带有查找表的CRC的简单C实现(非Arduino,但它必须非常容易适应):
static const uint8_t crc_table[] = {
0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15, 0x38, 0x3f, 0x36, 0x31,
0x24, 0x23, 0x2a, 0x2d, 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65,
0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d, 0xe0, 0xe7, 0xee, 0xe9,
0xfc, 0xfb, 0xf2, 0xf5, 0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd,
0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85, 0xa8, 0xaf, 0xa6, 0xa1,
0xb4, 0xb3, 0xba, 0xbd, 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2,
0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea, 0xb7, 0xb0, 0xb9, 0xbe,
0xab, 0xac, 0xa5, 0xa2, 0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a,
0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32, 0x1f, 0x18, 0x11, 0x16,
0x03, 0x04, 0x0d, 0x0a, 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42,
0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a, 0x89, 0x8e, 0x87, 0x80,
0x95, 0x92, 0x9b, 0x9c, 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4,
0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec, 0xc1, 0xc6, 0xcf, 0xc8,
0xdd, 0xda, 0xd3, 0xd4, 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,
0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44, 0x19, 0x1e, 0x17, 0x10,
0x05, 0x02, 0x0b, 0x0c, 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b, 0x76, 0x71, 0x78, 0x7f,
0x6a, 0x6d, 0x64, 0x63, 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13, 0xae, 0xa9, 0xa0, 0xa7,
0xb2, 0xb5, 0xbc, 0xbb, 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb, 0xe6, 0xe1, 0xe8, 0xef,
0xfa, 0xfd, 0xf4, 0xf3
};
uint8_t
crc8(uint8_t *p, uint8_t len)
{
uint16_t i;
uint16_t crc = 0x0;
while (len--) {
i = (crc ^ *p++) & 0xFF;
crc = (crc_table[i] ^ (crc << 8)) & 0xFF;
}
return crc & 0xFF;
}
答案 1 :(得分:0)
请参阅以下链接的参考资料:
Arduino的功能代码:
byte c8( byte x ){
for( byte i = 8; i--; ) {
x = ( x << 1 ) ^ ( x & 128 ? 7 : 0 );
}
return x;
}
void setup() {
Serial.begin( 9600 );
int msg = 0x3AD2;
Serial.print( '0x' );
Serial.print( c8( msg ), HEX );
// '0x30' is displayed on Serial Monitor
}
void loop() {}
由于参数x是强类型的字节(uint8_t),字大小数据(例如0x3AD2)将被截断为字节大小(在0x3AD2的情况下为0xD2)。
答案 2 :(得分:0)
可以让编译器为您找出查找表,如下所示:
#include <stdio.h>
#include <stdint.h>
/* * *
* Just change this define to whatever polynomial is in use
*/
#define CRC1B(b) ( (uint8_t)((b)<<1) ^ ((b)&0x80? 0x07 : 0) ) // MS first
/* * *
* 8+1 entry enum lookup table define
*/
#define CRC(b) CRC_##b // or CRC8B(b)
enum {
CRC(0x01) = CRC1B(0x80),
CRC(0x02) = CRC1B(CRC(0x01)),
CRC(0x04) = CRC1B(CRC(0x02)),
CRC(0x08) = CRC1B(CRC(0x04)),
CRC(0x10) = CRC1B(CRC(0x08)),
CRC(0x20) = CRC1B(CRC(0x10)),
CRC(0x40) = CRC1B(CRC(0x20)),
CRC(0x80) = CRC1B(CRC(0x40)),
// Add 0x03 to optimise in CRCTAB1
CRC(0x03) = CRC(0x02)^CRC(0x01)
};
/* * *
* Build a 256 byte CRC constant lookup table, built from from a reduced constant
* lookup table, namely CRC of each bit, 0x00 to 0x80. These will be defined as
* enumerations to take it easy on the compiler. This depends on the relation:
* CRC(a^b) = CRC(a)^CRC(b)
* In other words, we can build up each byte CRC as the xor of the CRC of each bit.
* So CRC(0x05) = CRC(0x04)^CRC(0x01). We include the CRC of 0x03 for a little more
* optimisation, since CRCTAB1 can use it instead of CRC(0x01)^CRC(0x02), again a
* little easier on the compiler.
*/
#define CRCTAB1(ex) CRC(0x01)ex, CRC(0x02)ex, CRC(0x03)ex,
#define CRCTAB2(ex) CRCTAB1(ex) CRC(0x04)ex, CRCTAB1(^CRC(0x04)ex)
#define CRCTAB3(ex) CRCTAB2(ex) CRC(0x08)ex, CRCTAB2(^CRC(0x08)ex)
#define CRCTAB4(ex) CRCTAB3(ex) CRC(0x10)ex, CRCTAB3(^CRC(0x10)ex)
#define CRCTAB5(ex) CRCTAB4(ex) CRC(0x20)ex, CRCTAB4(^CRC(0x20)ex)
#define CRCTAB6(ex) CRCTAB5(ex) CRC(0x40)ex, CRCTAB5(^CRC(0x40)ex)
/* * *
* This is the final lookup table. It is rough on the compiler, but generates the
* required lookup table automagically at compile time.
*/
static const uint8_t crc_table[256] = { 0, CRCTAB6() CRC(0x80), CRCTAB6(^CRC(0x80)) };
uint8_t crc8(uint8_t *p, uint8_t len)
{
uint8_t crc = 0x0;
while (len--) {
crc = crc_table[crc ^ *p++];
}
return crc;
}
void main( void )
{
int i, j;
printf("static const uint8_t crc_table[] = {");
for (i = 0; i < 0x10; i++)
{
printf("\n ");
for (j = 0; j < 0x10; j++)
{
printf( " 0x%02x,", crc_table[i*0x10+j] );
}
}
printf("\n};\n\n");
}