在python中同时执行一个方法

时间:2013-12-11 12:49:47

标签: python

在下面的代码中,我希望saveData函数同时执行48次。我正在使用线程来实现这一点,但程序不是保存文件,而是打印经过的时间并在执行后立即退出。为什么saveData函数没有被执行?我怎么能做到这一点?

#!/usr/bin/env python
import sys

import numpy as np
import h5py
import scipy
from PIL import Image
import timeit
import thread

import matplotlib.pyplot as plt

def saveImage(array, filename):
  fig=plt.figure(figsize=(4,3))
  ax=fig.add_subplot(1,1,1)
  plt.axis('off')
  p = plt.imshow(array)
  p.set_cmap('gray')
  extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
  plt.savefig(filename, bbox_inches=extent) 

def saveData(value1, value2, value3, dset):
  filename = "tomo1_" + str(value1) + ".png" 
  data = dset[value1,:,:]
  saveImage(data, filename)
  filename = "tomo2_" + str(value2) + ".png" 
  data = dset[:,value2,:]
  saveImage(data, filename)
  filename = "tomo3_" + str(value3) + ".png" 
  data = dset[:,:,value3]
  saveImage(data, filename)

def run():

  # Reopen the file and dataset using default properties.
  f = h5py.File(sys.argv[1])
  dset = f[sys.argv[2]]

  dim1 = len(dset)
  dim2 = len(dset[0])
  dim3 = len(dset[0][0])

  slice1 = 0
  slice2 = 0
  slice3 = 0
  factor1 = dim1/48
  factor2 = dim2/48
  factor3 = dim3/48
  tic=timeit.default_timer()
  for i in range(0,48):
    thread.start_new_thread(saveData,(slice1, slice2, slice3, dset))
    slice1 = slice1 + factor1
    slice2 = slice2 + factor2
    slice3 = slice3 + factor3

  toc=timeit.default_timer()
  print "elapsed time: " + str(toc - tic)

if __name__ == "__main__":
    run()        

2 个答案:

答案 0 :(得分:2)

首先,建议您使用友好模块“threading”而不是低级模块“thread”。

其次,你需要等待线程完成他们的工作。如果你使用threading.Thread对象,它有一个“join”方法,你可以用它来确保你的线程在你的代码进展之前完成。

看一下这个答案的例子:

https://stackoverflow.com/a/11968818/1055722

答案 1 :(得分:1)

手头的问题是你的父线程完成了,但是没有检查是否还有正在运行的子线程,这些线程以这种方式被静默杀死!我建议采用以下方法:

而不是import thread使用import threading

更改你的线程代码:

thread.start_new_thread(saveData,(slice1, slice2, slice3, dset))

threads_running = []          # keep track of your threads
# thread starting loop
for i in xrange(48):     # in this case xrange is what you really want!
    ...                  # do your data preparations here (slice, etc.)
    thread = threading.Thread(target=saveDate,
                              args=(slice1, slice2, slice3, dset))
    thread.start()
    threads_running.append(thread)   # "register" the running thread

# thread waiting to finish loop
while threads_running:            
    thread = thread_lst[i]
    thread.join(0.1)         # wait 0.1 second for thread to finish 
    if thread.is_alive():    # else check next thread
        continue
    else:
        print "Thread %s finished" % threads_running.pop(i)

类似的回答question