我有一个程序,我写了几年回来为字节找到“好”的二元运算符;将字节A
乘以字节B
以产生字节C
。运算符定义为256x256字节矩阵。下面是A
类实现的精简版。
Equals()
为真IFF阵列中的所有65536个字节都是相同的。
CompareTo()
将运算符的线性度比较为线性(对于cryto而言不好)到线性度较低(对于加密有利)。
因此,有两个实例A
和B
可以满足以下两个条件:
A.Equals(B) = false
(A.ComparesTo(B) == 0) = true
我的问题不多了:这是个好主意吗?我知道答案是否定的,但考虑到测量线性度的大量计算成本和我的问题的狭隘性,这个设计是有效的。代码类似于:
if (localMinimumOperator < globalMinimumOperator)
{
localMinimumOperator = globalMinimumOperator;
}
让我更容易阅读。
我的问题是:这种分歧的后果是什么:==,CompareTo()== 0
和Equals()
?或者:
是否有哪些LINQ扩展方法的列表描述哪个扩展使用哪个接口(IEquatable
或IComparable
)?
比Enumerable
上的MSDN文章更简洁?
例如:
IEnumerable<BinaryOperation> distinct = orgList.Distinct();
根据Enumerable.Distinct<TSource>
Method 和Equals(BinaryOperator)
调用Contains()
。我了解Sort()
和OrderBy()
使用对CompareTo()
的调用。
但是FindFirst()
和BinarySearch()
呢?
我的示例课程:
using System;
using System.Collections.Generic;
using System.Linq;
namespace Jww05
{
public class BinaryOperation : IEquatable<BinaryOperation>, IComparable<BinaryOperation>
{
#region ClassMembers
public List<List<byte>> TruthTable
{
get
{
// I don't like giving out the underlying list if I help it
var retVal = new List<List<byte>>(OperatorDefintion);
return retVal;
}
}
// private data store for TruthTable
private List<List<byte>> OperatorDefintion { get; set; }
public BinaryOperation()
{
// initial state is the Identity operator
OperatorDefintion = new List<List<byte>>();
for (int i = 0; i < 256; i++)
{
var curRow = new List<byte>();
for (int j = 0; j < 256; j++)
{
curRow.Add((byte)(i + j));
}
OperatorDefintion.Add(curRow);
}
}
private long MeasureOperatorLinearity()
{
var diagonalOffsets = new byte[] { 255, 0, 1 };
/*
* Code that measures linearity in the original code used the Fast Walsh Hadamard Transform.
* That should go here, but it is removed because the FWHT is clutter for the purposes of this question.
*
* Since I needed a stub for this, I decided to exacerbate the differnece
* between CompareTo() == 0 and Equals()
* by returning an arbitrary int in lieu of the long CPU intensive Fast Walsh Hadamard Transform.
*
* If the matrices are identical on an element-by-element basis, then the Faux Linearity will be the the same.
* If the faux linearity (sum of terms on the main diagonal and corners) are the same, the underlying matrices could be different on an element-by-element basis.
*/
long fauxLinearityMeasure = 0;
for (var currRow = 0; currRow < OperatorDefintion.Count(); ++currRow)
{
fauxLinearityMeasure *= 5;
fauxLinearityMeasure = diagonalOffsets.Select(diagonalOffset => (byte)(currRow + diagonalOffset))
.Aggregate(fauxLinearityMeasure, (current, offestedIndex) => current + (OperatorDefintion[offestedIndex][currRow]));
}
return (int)fauxLinearityMeasure;
}
#endregion ClassMembers
#region ComparisonOperations
public int CompareTo(BinaryOperation other)
{
long otherLinearity = other.MeasureOperatorLinearity();
long thisLinearity = MeasureOperatorLinearity();
long linearityDiff = thisLinearity - otherLinearity;
// case the differnece of the linarity measures into {-1, 0, 1}
return (0 < linearityDiff) ? 1
: (0 > linearityDiff) ? -1
: 0;
}
public static bool operator >(BinaryOperation lhs, BinaryOperation rhs)
{
if (ReferenceEquals(null, lhs) ||
ReferenceEquals(null, rhs))
{
return false;
}
return (0 < lhs.CompareTo(rhs));
}
public static bool operator <(BinaryOperation lhs, BinaryOperation rhs)
{
if (ReferenceEquals(null, lhs) ||
ReferenceEquals(null, rhs))
{
return false;
}
return (0 > lhs.CompareTo(rhs));
}
public static bool operator <=(BinaryOperation lhs, BinaryOperation rhs)
{
if (ReferenceEquals(null, lhs) ||
ReferenceEquals(null, rhs))
{
return false;
}
// equals is cheap
if (lhs.Equals(rhs))
{
return true;
}
return (0 > lhs.CompareTo(rhs));
}
public static bool operator >=(BinaryOperation lhs, BinaryOperation rhs)
{
if (ReferenceEquals(null, lhs) ||
ReferenceEquals(null, rhs))
{
return false;
}
// equals is cheap
if (lhs.Equals(rhs))
{
return true;
}
return (0 < lhs.CompareTo(rhs));
}
#endregion ComparisonOperations
#region EqualityOperators
public bool Equals(BinaryOperation other)
{
if (ReferenceEquals(null, other))
{
return false;
}
var otherTruthTable = other.TruthTable;
var thisTruthTable = TruthTable;
var isEquals = true;
for (int currRow = 0; currRow < thisTruthTable.Count(); ++currRow)
{
isEquals = isEquals && thisTruthTable[currRow].SequenceEqual(otherTruthTable[currRow]);
}
return isEquals;
}
public override bool Equals(object obj)
{
return Equals(obj as BinaryOperation);
}
public override int GetHashCode()
{
return OperatorDefintion.SelectMany(currRow => currRow)
.Aggregate(1, (current, currByte) => current * 5 + currByte);
}
public static bool operator ==(BinaryOperation lhs, BinaryOperation rhs)
{
if (ReferenceEquals(null, lhs) ||
ReferenceEquals(null, rhs))
{
return false;
}
return (0 == lhs.CompareTo(rhs));
}
public static bool operator !=(BinaryOperation lhs, BinaryOperation rhs)
{
if (ReferenceEquals(null, lhs) ||
ReferenceEquals(null, rhs))
{
return false;
}
return (0 != lhs.CompareTo(rhs));
}
#endregion EqualityOperators
}
}
答案 0 :(得分:4)
这种分歧的后果是什么:==,CompareTo()== 0和Equals()?
有人在将来看你的代码会真的很讨厌你。
或者替代:是否有哪些linq扩展方法的列表描述哪个扩展使用哪个接口(IEquitable或IComparable)?
我认为你自己找到了大部分内容。一个好的经验法则是,LINQ函数使用的界面通常没有什么令人惊讶的(没有惊喜是优秀设计的特征之一 - 与你的不同)。例如:很明显,要对元素进行排序,必须知道元素应该在哪个特定顺序中,单独的等式/不等式对此不够。 BinarySearch
还需要知道搜索过程中“走哪条路” - 如果元素大于当前值,它会重新诅咒到已排序数组的上半部分,如果小则进入较低级别。再次:显然它需要IComparable
。对于Distinct
Equals
和GetHashCode
就足够了 - 不需要排序来确定一组唯一元素。等等。