我正在使用weka java API进行网格搜索,以便为MultilayerPerceptron找到最佳参数。但是,我的java代码给出的RMSE(我在这里做回归)与weka GUI给出的不同。这是代码:
public class ANN {
/**
* @param args
*/
public static void main(String[] args) throws Exception{
DataSource source = new DataSource("/home/yongfeng/ML/Project/choose_openning_price/holdout.arff");
Instances raw = source.getDataSet();
int trainSize = (int) Math.round(raw.numInstances()*0.666666666);
int testSize = raw.numInstances() - trainSize;
Instances train = new Instances(raw, 0, trainSize);
Instances test = new Instances(raw, trainSize, testSize);
train.setClassIndex(0);
test.setClassIndex(0);
final int sizeOfSearch = 15;
double[][] resultsArray = new double[sizeOfSearch][sizeOfSearch];
for (int i=0;i < sizeOfSearch;i++){
for (int j=0;j < sizeOfSearch;j++){
double m = i;
double k = j;
double learningRate = (m+1)/1000;
double momentum = (k+1)/100;
MultilayerPerceptron ann = new MultilayerPerceptron();
String options = String.format("-L %f -M %f -N 500 -V 0 -S 0 -E 20 -H a", learningRate, momentum);
ann.setOptions(weka.core.Utils.splitOptions(options));
ann.buildClassifier(train);
Evaluation eval = new Evaluation(train);
eval.evaluateModel(ann, test);
double error = eval.rootMeanSquaredError();
System.out.println("learningRate: " + learningRate + "\tMomentum: " + momentum + "\tError: " + error);
printOptions(ann.getOptions());
resultsArray[i][j] = error;
ann = null;
eval = null;
}
}
}
}
我甚至在每次迭代中打印出选项,结果与weka GUI中的选项相同。要预测的属性是第一个,所以setClassIndex(0);并使用火车测试集拆分进行评估。有人可以帮忙吗?非常感谢!
答案 0 :(得分:0)
在java代码中的weka安装文件夹中使用weka.jar。