我有相当大的数据框,其中包含分为治疗组的个人信息。我试图为每个组生成可变的均值和性别百分比。我能够计算出手段,但我不确定如何获得性别百分比。
下面,我为我的数据生成了一个小型副本:
library(plyr)
#create variables and data frame
sampleid<-seq(1:100)
gender = rep(c("female","male"),c(50,50))
score <- rnorm(100)
age<-sample(25:35,100,replace=TRUE)
treatment <- rep(seq(1:5), each=4)
d <- data.frame(sampleid,gender,age,score, treatment)
>head(d)
sampleid gender age score treatment
1 1 female 34 1.6917201 1
2 2 female 26 -1.6189545 1
3 3 female 28 1.2867895 1
4 4 female 34 -0.5027578 1
5 5 female 29 -1.3652895 2
6 6 female 26 -2.4430843 2
我通过以下方式获得每个数字列的平均值:
groupstat<-ddply(d, .(treatment),numcolwise(mean))
给出:
treatment sampleid age score
1 1 42.5 29.15 0.142078574
2 2 46.5 29.50 -0.261492514
3 3 50.5 30.50 -0.188393235
4 4 54.5 30.45 0.003526078
5 5 58.5 30.55 0.062996737
然而,我还需要一个额外的栏目“百分比女性”,这应该给我每个治疗组1:5中女性的百分比。 有人可以帮我解决这个问题吗?
答案 0 :(得分:4)
试试这个
groupstat<-ddply(d, .(treatment),summarise,
meansc= mean(score),
meanage= mean(age),
meanID= mean(sampleid),
nfem= length(gender[gender=="female"]), # number females per treatment group
nmale= length(gender[gender=="male"]), # number of males per treatment group
percentfem= nfem/(nfem+nmale)) # percent females by treatment group
答案 1 :(得分:1)
我首先会分成治疗组(split(d, f = d$treatment)
)而不是计算每组的方法(function(x) sum(x$gender == "female")/length(x$gender)
:
sapply(split(d, f = d$treatment), function(x) sum(x$gender == "female")/length(x$gender))