通过二维阵列对角循环

时间:2013-12-06 09:13:25

标签: java for-loop multidimensional-array

我写了下面的代码来走一半数组的对角线:

String[][] b = [a,b,c]
               [d,e,f]
               [g,h,i];  

public void LoopDiag()
   for (int i = b.length - 1; i > 0; i--) {
       String temp = "";
       for (int j = 0, x = i; x <= b.length - 1; j++, x++) {
          temp = temp+b[x][j];
       }
       System.out.println(temp)
   }


   for (int i = 0; i <= b.length - 1; i++) {
        String temp = "";
        for (int j = 0, y = i; y <= b.length - 1; j++, y++) {
        temp = temp+b[j][y];
        }
        System.out.println(temp);
   }
}

现在它打印对角线,即电流输出:

g dh aei bf c

如何打印其他半对角线,即所需的输出:

a db gec hf i 

12 个答案:

答案 0 :(得分:15)

仅为测试目的初始化数组:

    int dim = 5;
    char ch = 'A';
    String[][] array = new String[dim][];
    for( int i = 0 ; i < dim ; i++ ) {
        array[i] = new String[dim];
        for( int j = 0 ; j < dim ; j++, ch++ ) {
            array[i][j] = "" + ch;
        }
    }

输出我们的矩阵:

    for( int i = 0 ; i < dim ; i++ ) {
        for( int j = 0 ; j < dim ; j++, ch++ ) {
            System.out.print( array[i][j] + " " );
        }
        System.out.println();
    }
    System.out.println( "============================" );

解决方案

来自对角线的元素索引有一条规则 - 它们的和在一个对角线上是恒定的:

VARIANT 1

使用两个循环来提取所有对角线。

第一个循环提取对角线的上半部分:

    for( int k = 0 ; k < dim ; k++ ) {
        for( int j = 0 ; j <= k ; j++ ) {
            int i = k - j;
            System.out.print( array[i][j] + " " );
        }
        System.out.println();
    }

第二个循环遍历对角线的下半部分:

    for( int k = dim - 2 ; k >= 0 ; k-- ) {
        for( int j = 0 ; j <= k ; j++ ) {
            int i = k - j;
            System.out.print( array[dim - j - 1][dim - i - 1] + " " );
        }
        System.out.println();
    }

VARIANT 2

使用一个循环来提取所有对角线,但有额外迭代一次额外检查

    for( int k = 0 ; k < dim * 2 ; k++ ) {
        for( int j = 0 ; j <= k ; j++ ) {
            int i = k - j;
            if( i < dim && j < dim ) {
                System.out.print( array[i][j] + " " );
            }
        }
        System.out.println();
    }

输出:

A B C D E 
F G H I J 
K L M N O 
P Q R S T 
U V W X Y 
============================
A 
F B 
K G C 
P L H D 
U Q M I E 
V R N J 
W S O 
X T 
Y 

更新

评论中有关于矩形矩阵( height != width )的问题。这是矩形矩阵的解决方案:

规则保持不变:来自同一对角线的元素索引之和是恒定的

索引的最小总和为 0 (对于索引为[0; 0]的矩阵中的第一个元素)

索引的最大总和为 width + height - 2 (对于索引为[height-1; with-1]的矩阵中的最后一个元素)

仅为测试目的初始化矩形矩阵:

    int WIDTH = 7;
    int HEIGHT = 3;
    char ch = 'A';
    String[][] array = new String[HEIGHT][];
    for( int i = 0 ; i < HEIGHT ; i++ ) {
        array[i] = new String[WIDTH];
        for( int j = 0 ; j < WIDTH ; j++, ch++ ) {
            array[i][j] = "" + ch;
        }
    }

打印矩形矩阵:

    for( int i = 0 ; i < HEIGHT ; i++ ) {
        for( int j = 0 ; j < WIDTH ; j++, ch++ ) {
            System.out.print( array[i][j] + " " );
        }
        System.out.println();
    }
    System.out.println( "============================" );

解决方案

    for( int k = 0 ; k <= WIDTH + HEIGHT - 2; k++ ) {
        for( int j = 0 ; j <= k ; j++ ) {
            int i = k - j;
            if( i < HEIGHT && j < WIDTH ) {
                System.out.print( array[i][j] + " " );
            }
        }
        System.out.println();
    }

输出:

A B C D E F G 
H I J K L M N 
O P Q R S T U 
============================
A 
H B 
O I C 
P J D 
Q K E 
R L F 
S M G 
T N 
U 

答案 1 :(得分:4)

只是帮助自己,看看你需要循环的索引:

#1 (0,0)               -> a
#2 (1,0)  (0,1)        -> bd
#3 (2,0)  (1,1)  (0,2) -> gec
#4 (2,1)  (1,2)        -> hf
#5 (2,2)               -> i

查看每次迭代中索引的变化并创建算法。不那么困难,所以你自己做作业;)

答案 2 :(得分:4)

  

如果我们将其分解为2个子问题,解决方案会容易得多:

  1. 弄清楚每条对角线的起点。
  2. 给定对角线的起始指数,打印对角线。

    public void printMatrixDiagonals(int[][] matrix) {
    
        int c = 0;
        int count = matrix.length + matrix[0].length -1;
        int i = 0, j = 0;
        //There can be at most  m + n -1 diagonals to be printed
        while (c < count) {
            //Start printing diagonals from i and j
            printDiagonal(i, j, matrix);
            if (i < matrix.length -1) {
                //We increment row index until we reach the max number of rows
                i++;
            } else if (j < matrix[0].length - 1) {
                //We are at maximum index of row; so its time to increment col index
                //We increment column index until we reach the max number of columns
                j++;
            }
            c++;
        }
    }
    
  3.   

    打印对角线:请注意,每次我们开始打印每个对角线时,行的索引应该递减,列的索引应该递增。因此,给定每个对角线的起始指数,我们可以按如下方式打印对角线:

    private void printDiagonal(int i, int j, int[][] m) {
        while (i >=0 && j< m[0].length ) {
            System.out.print(m[i][j] + " ");
            i--;
            j++;
        }
        System.out.println("");
    }
    

答案 3 :(得分:3)

我写了以下代码。关键是要排出从顶部开始的所有对角线,然后移动到从侧面开始的对角线。我提出了一种方法,它结合了两个角度来横穿对角线西北 - 东南和东北 - 西南,以及独立的方法来穿越各自的角度。

public static void main(String[] args){
    int[][] m = {{1,2,3},{4,5,6},{7,8,9},{10,11,12}};
    printDiagonals(m, DiagonalDirection.NEtoSW, new DiagonalVisitor() {     
        public void visit(int x, int y, int[][] m) {
            System.out.println(m[x][y]);
        }
    });
}

public enum DiagonalDirection{
    NWToSE,
    NEtoSW
}

private static abstract class DiagonalVisitor{
    public abstract void visit(int x, int y, int[][] m);
}

public static void printDiagonals(int[][] m, DiagonalDirection d, DiagonalVisitor visitor){

    int xStart = d==DiagonalDirection.NEtoSW ? 0 : m.length-1;
    int yStart = 1;


    while(true){
        int xLoop, yLoop;
        if(xStart>=0 && xStart<m.length){
            xLoop = xStart;
            yLoop = 0;
            xStart++;
        }else if(yStart<m[0].length){
            xLoop = d==DiagonalDirection.NEtoSW ? m.length-1 : 0;
            yLoop = yStart;
            yStart++;
        }else
            break;

        for(;(xLoop<m.length && xLoop>=0)&&yLoop<m[0].length; xLoop=d==DiagonalDirection.NEtoSW ? xLoop-1 : xLoop+1, yLoop++){
            visitor.visit(xLoop, yLoop, m);
        }

    }

}

public static void printDiagonalsNEtoSW(int[][] m, DiagonalVisitor visitor){

    int xStart = 0;
    int yStart = 1;


    while(true){
        int xLoop, yLoop;
        if(xStart<m.length){
            xLoop = xStart;
            yLoop = 0;
            xStart++;
        }else if(yStart<m[0].length){
            xLoop = m.length-1;
            yLoop = yStart;
            yStart++;
        }else
            break;

        for(;xLoop>=0 && yLoop<m[0].length; xLoop--, yLoop++){
            visitor.visit(xLoop, yLoop, m);
        }


    }
}

public static void printDiagonalsNWtoSE(int[][] m, DiagonalVisitor visitor){

    int xStart = m.length-1;
    int yStart = 1;


    while(true){
        int xLoop, yLoop;
        if(xStart>=0){
            xLoop = xStart;
            yLoop = 0;
            xStart--;
        }else if(yStart<m[0].length){
            xLoop = 0;
            yLoop = yStart;
            yStart++;
        }else
            break;

        for(;xLoop<m.length && yLoop<m[0].length; xLoop++, yLoop++){
            visitor.visit(xLoop, yLoop, m);
        }       
    }
}

答案 4 :(得分:2)

这适用于非方阵。理解起来很简单,但每对角线调用一次min()和max()。

int ndiags = width +  height - 1;
System.out.println("---");
for (int diag = 0; diag < ndiags; diag++) {
    int row_stop = Math.max(0,  diag -  width + 1);
    int row_start = Math.min(diag, height - 1);
    for (int row = row_start; row >= row_stop; row--) {
        // on a given diagonal row + col = constant "diag"
        // diag labels the diagonal number
        int col = diag - row;
        System.out.println(col + "," + row);
        relax(col, row);
    }
    System.out.println("---");
}

此处输出的宽度= 3,高度= 3

---
0,0
---
0,1
1,0
---
0,2
1,1
2,0
---
1,2
2,1
---
2,2
---

width = 3,height = 2

---
0,0
---
0,1
1,0
---
1,1
2,0
---
2,1
---

width = 2,height = 3

---
0,0
---
0,1
1,0
---
0,2
1,1
---
1,2
---

答案 5 :(得分:1)

这是在while循环中打印对角矩阵的非常直观的方法。

将问题概括为整体而不是两部分,并根据空间复杂性进行优化。

package algorithm;

public class printDiagonaly
{
    public static void main(String[] args)
    {
        int[][] a = new int[][]{{1, 2, 3, 4, 5},
                {6, 7, 8, 9, 10},
                {11, 12, 13, 14, 15},
                {16, 17, 18, 19, 20}};

        int lr = 0;
        int lc = -1;
        int fr = -1;
        int fc = 0;
        int row = a.length - 1;
        int col = a[0].length - 1;

        while (lc < col || fc < col || fr < row || lr < row)
        {
            if (fr < row)
            {
                fr++;
            }
            else
            {
                fc++;
            }

            if (lc < col)
            {
                lc++;
            }
            else
            {
                lr++;
            }

            int tfr = fr;
            int tlr = lr;
            int tlc = lc;
            int tfc = fc;

            while (tfr >= tlr && tfc <= tlc)
            {

                System.out.print(a[tfr][tfc] + " ");
                tfr--;
                tfc++;
            }
            System.out.println("\n");
        }
    }
}

答案 6 :(得分:0)

以下是代码:

public void loopDiag(String [][] b) {

        boolean isPrinted  = false;
        for (int i = 0 ; i < b.length ; i++) {
            String temp="";
            int x=i;
            for(int j = 0 ; j < b.length ; j++) {
                int y = j;
                while (x >= 0 && y < b.length) {
                    isPrinted = false;
                    temp+=b[x--][y++];                  
                }
                if(!isPrinted) {
                    System.out.println(temp);
                    isPrinted = true;
                }
            }
        }
    }

答案 7 :(得分:0)

正如Alex在这里提到的,你需要在循环中查看索引。 以下是我如何解决这个问题。

Input:         
a b c    ----- (0,0) (0,1) (0,2)
d e f    ----- (1,0) (1,1) (1,2)
g h i    ----- (2,0) (2,1) (2,2)

Output:
a        ----- (0,0)
b d      ----- (0,1) (1,0)
c e g    ----- (0,2) (1,1) (2,0)
f h      ----- (1,2) (2,1)
i        ----- (2,2)

public class PrintDiagonal{

    public static void printDR(String[][] matrix, int rows, int cols){
        for(int c=0; c < cols; c++){
            for(int i=0, j=c; i< rows && j>=0;i++,j--){
                System.out.print(matrix[i][j] +" ");
             }
             System.out.println();
        }

        for(int r =1; r < rows; r++){
            for(int i =r, j= cols -1; i<rows && j>=0; i++,j--){
                System.out.print(matrix[i][j] + " ");
            }
            System.out.println();
        }
    }
    public static void main(String[] args){
        String[][] matrix ={
            {"a","b","c"},
            {"d","e","f"},
            {"g","h","i"}
        };

        int rows = matrix.length;
        int columns = matrix[0].length; 
        printDR(matrix ,rows, columns);
    }
}

答案 8 :(得分:0)

这是:

int [][]mat = { {1,2,3},
                {4,5,6},
                {7,8,9},
};

int N=3;

for (int s=0; s<N; s++) {
    for (int i=s; i>-1; i--) {
        System.out.print(mat[i][s-i] + " ");
    }
    System.out.println();
}

for (int s=1; s<N; s++) {
    for (int i=N-1; i>=s; i--) {
        System.out.print(mat[i][s+N-1-i] + " ");
    }
    System.out.println();
}

第一个循环打印从第一列开始的对角线,第二个循环打印剩余的对角线(从底行开始)。

输出:

1 
4 2 
7 5 3 
8 6 
9 

答案 9 :(得分:0)

    String ar[][]={{"a","b","c"},{"d","e","f"},{"g","h","i"}};
    int size1=ar.length-1, size2=ar.length;

    for(int i=0; i<ar.length; i++)
    {   
        String a="";        
        for(int j=0, x=ar.length-1-i; j<ar.length-i; j++, x--)
        {
            if((j+x)==size1)
            a=a+ar[x][j];
        }
        size1--;

        System.out.println(a);
        a="";
        for(int j=i+1, x=ar.length-1; j<ar.length; j++, x--)
        {
            if((j+x)==size2)
            a=a+ar[x][j];
        }
        System.out.println(a);
        size2++;
    }

输出

GEC HF D b 一世 一个

答案 10 :(得分:0)

类型1:我们可以很轻松地使用python解决此问题

代码:

r,c=map(int,input().split())
mat=[[str(ch) for ch in input().split()]for _ in range(r)]
for i in range(r*c-2):
    lis=[]
    for j in range(r):
        for k in range(c):
            if k+j==i:
                lis.append(mat[j][k])
    print(*lis[::-1])

输出:

5 5
a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

a
f b
k g c
p l h d
u q m i e
v r n j
w s o
x t
y

答案 11 :(得分:-2)

这与leoflower在这里发布的内容相同。我刚刚更改了变量名称以便更好地理解。

level =表示正在打印的对角线的当前级别。例如: - level = 2表示具有索引(0,2),(1,1),(2,0)

的对角元素

currDiagRowIndex =表示正在打印的当前对角线的行索引

currDiagColIndex =表示正在打印的当前对角线的列索引

void printMatrixDiagonal(int matrix[][], int endRowIndex, int endColIndex){
    for(int level = 0; level < endColIndex; level++){
        for(int currDiagRowIndex = 0, currDiagColIndex = level; currDiagRowIndex < endRowIndex && currDiagColIndex >= 0 ; currDiagRowIndex++, currDiagColIndex--){
            System.out.print(matrix[currDiagRowIndex][currDiagColIndex] + "  ");
        }
        System.out.println();
    }

    for(int level = 1; level < endRowIndex; level++){
        for(int currDiagRowIndex = level, currDiagColIndex = endColIndex-1; currDiagRowIndex < endRowIndex && currDiagColIndex >= 0; currDiagRowIndex++, currDiagColIndex--){
            System.out.print(matrix[currDiagRowIndex][currDiagColIndex]+ "  ");
        }
        System.out.println();
    }
}

输入:

1 2 3 4 5 
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

输出:

1  
2  6  
3  7  11  
4  8  12  16  
5  9  13  17  21  
10  14  18  22  
15  19  23  
20  24  
25