提高WEKA Multilayer Perceptron模型的准确性

时间:2013-12-02 03:36:17

标签: java machine-learning artificial-intelligence neural-network weka

我目前正在使用免费的UCI乳腺癌.arff文件练习WEKA建模的绳索,并且从这里的各个帖子我能够调整它的准确度从63%到73%。我在Windows 7 Starter机器中使用WEKA 3.7.10

  • 我使用属性选择来减少使用InfoGainAttributeEvalRanker的变量数量。我选择了最上面的五个,结果如下:

    Evaluator:    weka.attributeSelection.InfoGainAttributeEval 
    Search:       weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1
    Relation:     breast-cancer
    Instances:    286
    Attributes:   10
                 age
                 menopause
                 tumor-size
                 inv-nodes
                 node-caps
                 deg-malig
                 breast
                 breast-quad
                 irradiat
                 Class
    Evaluation mode:    10-fold cross-validation
    
    
    
    === Attribute selection 10 fold cross-validation (stratified), seed: 1 ===
    
    average merit      average rank  attribute
    0.078 +- 0.011     1.3 +- 0.64    6 deg-malig
    0.071 +- 0.01      1.9 +- 0.3     4 inv-nodes
    0.061 +- 0.008     3   +- 0.77    3 tumor-size
    0.051 +- 0.007     3.8 +- 0.4     5 node-caps
    0.026 +- 0.006     5   +- 0       9 irradiat
    0.012 +- 0.003     6.4 +- 0.49    1 age
    0.01  +- 0.003     6.6 +- 0.49    8 breast-quad
    0.003 +- 0.001     8.5 +- 0.5     7 breast
    0.003 +- 0.002     8.5 +- 0.5     2 menopause
    
  • 删除排名较低的变量后,我继续创建我的模型。我之所以选择Multilayer Perceptron,是因为它是我研究期刊所需的算法。

0.1使用learning rate代表momentumhidden nodes以及epoch指数数字1,2,4,8的因子和hidden node等等。

使用该方法进行了几次尝试之后,我注意到了一个模式,即使用2表示隐藏图层和十进制等效的二进制数字,即。 512,1024,2048,...导致提高准确性。例如,epoch为2,hidden node 1024,依此类推。

我有各种各样的结果,但到目前为止我得到的最高结果是以下(使用epoch 2和 Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.1 -N 16384 -V 0 -S 0 -E 20 -H 2 Relation: breast-cancer-weka.filters.unsupervised.attribute.Remove-R1-2,7-8 Instances: 286 Attributes: 6 tumor-size inv-nodes node-caps deg-malig irradiat Class Test mode: 10-fold cross-validation === Classifier model (full training set) === Sigmoid Node 0 Inputs Weights Threshold -2.4467109489840375 Node 2 2.960926490700117 Node 3 1.5276384018358489 Sigmoid Node 1 Inputs Weights Threshold 2.446710948984037 Node 2 -2.9609264907001167 Node 3 -1.5276384018358493 Sigmoid Node 2 Inputs Weights Threshold 0.8594931368555995 Attrib tumor-size=0-4 -0.6809394102558067 Attrib tumor-size=5-9 -0.7999278705976403 Attrib tumor-size=10-14 -0.5139914771540879 Attrib tumor-size=15-19 2.3071396030112834 Attrib tumor-size=20-24 -6.316868254289899 Attrib tumor-size=25-29 5.535754474315768 Attrib tumor-size=30-34 -12.31495416708197 Attrib tumor-size=35-39 2.165860489861981 Attrib tumor-size=40-44 10.740913335424047 Attrib tumor-size=45-49 9.102261927484186 Attrib tumor-size=50-54 -17.072392893550735 Attrib tumor-size=55-59 0.043056333044031 Attrib inv-nodes=0-2 9.578867366884618 Attrib inv-nodes=3-5 1.3248317047328586 Attrib inv-nodes=6-8 -5.081199984305494 Attrib inv-nodes=9-11 -8.604844224457239 Attrib inv-nodes=12-14 2.2330604430275907 Attrib inv-nodes=15-17 -2.8692154868988355 Attrib inv-nodes=18-20 0.04225234708199947 Attrib inv-nodes=21-23 0.017664071511846485 Attrib inv-nodes=24-26 -0.9992481277256989 Attrib inv-nodes=27-29 -0.02737484354173595 Attrib inv-nodes=30-32 -0.04607516719307534 Attrib inv-nodes=33-35 -0.038969156415242706 Attrib inv-nodes=36-39 0.03338452826774849 Attrib node-caps 6.764954936579671 Attrib deg-malig=1 -5.037151186065571 Attrib deg-malig=2 12.469858109768378 Attrib deg-malig=3 -8.382625277311769 Attrib irradiat 8.302010702287868 Sigmoid Node 3 Inputs Weights Threshold -0.7428771456532647 Attrib tumor-size=0-4 3.5709673152321555 Attrib tumor-size=5-9 3.563713261511895 Attrib tumor-size=10-14 7.86118954430952 Attrib tumor-size=15-19 2.8762105204084167 Attrib tumor-size=20-24 4.60168522637948 Attrib tumor-size=25-29 -5.849391383398816 Attrib tumor-size=30-34 -1.6805815971562046 Attrib tumor-size=35-39 -12.022394228003419 Attrib tumor-size=40-44 11.922229608392747 Attrib tumor-size=45-49 -1.9939414047194557 Attrib tumor-size=50-54 -5.9801974214306215 Attrib tumor-size=55-59 -0.04909236196295539 Attrib inv-nodes=0-2 5.569516359775502 Attrib inv-nodes=3-5 -7.871275549119543 Attrib inv-nodes=6-8 3.405277467966008 Attrib inv-nodes=9-11 -0.3253699778307026 Attrib inv-nodes=12-14 1.244234346055825 Attrib inv-nodes=15-17 1.179311225120216 Attrib inv-nodes=18-20 0.03495291263409073 Attrib inv-nodes=21-23 0.0043299366591334695 Attrib inv-nodes=24-26 0.6595250300030937 Attrib inv-nodes=27-29 -0.02503529326219822 Attrib inv-nodes=30-32 0.041787638417097844 Attrib inv-nodes=33-35 0.008416652090130837 Attrib inv-nodes=36-39 -0.014551878794926747 Attrib node-caps 4.7997880904143955 Attrib deg-malig=1 1.6752746955482163 Attrib deg-malig=2 6.130488722916935 Attrib deg-malig=3 -6.989852429736567 Attrib irradiat 8.716254786514295 Class no-recurrence-events Input Node 0 Class recurrence-events Input Node 1 Time taken to build model: 27.05 seconds === Stratified cross-validation === === Summary === Correctly Classified Instances 210 73.4266 % Incorrectly Classified Instances 76 26.5734 % Kappa statistic 0.2864 Mean absolute error 0.3312 Root mean squared error 0.4494 Relative absolute error 79.1456 % Root relative squared error 98.3197 % Coverage of cases (0.95 level) 98.951 % Mean rel. region size (0.95 level) 97.7273 % Total Number of Instances 286 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.891 0.635 0.768 0.891 0.825 0.300 0.633 0.748 no-recurrence-events 0.365 0.109 0.585 0.365 0.449 0.300 0.633 0.510 recurrence-events Weighted Avg. 0.734 0.479 0.714 0.734 0.713 0.300 0.633 0.677 === Confusion Matrix === a b <-- classified as 179 22 | a = no-recurrence-events 54 31 | b = recurrence-events 16384:

{{1}}

我的问题是如何才能将这些数据的准确度提高到至少90%? 我是否必须进行过滤,使用其他模式的MLP输入参数?

我计划在学习了如何操作之后再使用另一组数据(它有大约50个变量和100,000个实例)。

2 个答案:

答案 0 :(得分:5)

这个问题显然没有好的答案,但我会给你一些或多或少的使用MLP的一般提示:

  • 首先,为什么在处理这样小的数据集时删除功能?特征选择在高维问题和/或计算昂贵的模型中是重要的。乳腺癌和MLP都不是这样。
  • 迭代计数是 MLP的最差停止标准,您应该在验证错误上升时停止训练,而不是在经过一定量的迭代后停止
  • 我不知道你使用什么成本函数,但最重要的部分是正则化,因为MLP容易过度拟合。一些Tikhonov正则化是最小的。
  • 对于此类问题使用多个隐藏层是完全冗余。特别是,由于消失的梯度现象,在MLP中训练多个隐藏层通常是不可能的。
  • 为了摆脱学习算法的参数化,我还建议放弃使用朴素算法并至少使用resillent传播,这证明在很多应用程序中都能很好地工作。

答案 1 :(得分:0)

lejlot已经取得了很好的成绩。如果您觉得某些变量不如其他变量重要,请不要自行删除它们。我建议你试试lasso regularization。正则化会为模型中的变量数量增加一个惩罚,并且当您增加惩罚时,模型中的变量数量将减少。 lasso和Tikhonov之间的区别在于前者使用范数-1正则化,而后者使用范数-2。您可以查看此blog了解详情。

套索上还有一个开源java implementation