我正在为学校做项目,我需要收集个人NCAA足球运动员的职业统计数据。每个玩家的数据都采用这种格式。
http://www.sports-reference.com/cfb/players/ryan-aplin-1.html
我找不到所有球员的总数所以我需要逐页进行并拉出每个传球得分Rushing&的最后一排。接收等html表
每个玩家都按姓氏分类,并附上每个字母的链接。
http://www.sports-reference.com/cfb/players/
例如,每个名字为A的玩家都可以在这里找到。
http://www.sports-reference.com/cfb/players/a-index.html
这是我第一次真正进入数据抓取工作,所以我尝试用答案找到类似的问题。我找到的最接近的答案是this question
我相信我可以使用非常类似的东西,我用收集的玩家的名字切换页码。但是,我不确定如何更改它以查找播放器名称而不是页码。
塞缪尔·文图拉(Samuel L. Ventura)最近也发表了关于NFL数据数据搜集的讨论,可以找到here。
编辑:
Ben非常乐于助人并提供了一些很棒的代码。第一部分非常有效,但是当我尝试运行第二部分时,我遇到了这个问题。
> # unlist into a single character vector
> links <- unlist(links)
> # Go to each URL in the list and scrape all the data from the tables
> # this will take some time... don't interrupt it!
> all_tables <- lapply(links, readHTMLTable, stringsAsFactors = FALSE)
Error in UseMethod("xmlNamespaceDefinitions") :
no applicable method for 'xmlNamespaceDefinitions' applied to an object of class "NULL"
> # Put player names in the list so we know who the data belong to
> # extract names from the URLs to their stats page...
> toMatch <- c("http://www.sports-reference.com/cfb/players/", "-1.html")
> player_names <- unique (gsub(paste(toMatch,collapse="|"), "", links))
Error: cannot allocate vector of size 512 Kb
> # assign player names to list of tables
> names(all_tables) <- player_names
Error: object 'player_names' not found
> fix(inx_page)
Error in edit(name, file, title, editor) :
unexpected '<' occurred on line 1
use a command like
x <- edit()
to recover
In addition: Warning message:
In edit.default(name, file, title, editor = defaultEditor) :
deparse may be incomplete
由于没有足够的内存(我目前使用的计算机只有4GB),这可能是一个错误。虽然我不明白错误
> all_tables <- lapply(links, readHTMLTable, stringsAsFactors = FALSE)
Error in UseMethod("xmlNamespaceDefinitions") :
no applicable method for 'xmlNamespaceDefinitions' applied to an object of class "NULL"
通过我的其他数据集,我的玩家实际上只能追溯到2007年。如果从2007年开始有一些方法可以帮助人们缩小数据量。如果我有一个名单我想拉的人名单,我可以在
中替换lnk links[[i]] <- paste0("http://www.sports-reference.com", lnk)
只有我需要的球员?
答案 0 :(得分:8)
以下是如何轻松获取所有播放器页面上所有表格中的所有数据...
首先列出所有玩家网页的网址...
require(RCurl); require(XML)
n <- length(letters)
# pre-allocate list to fill
links <- vector("list", length = n)
for(i in 1:n){
print(i) # keep track of what the function is up to
# get all html on each page of the a-z index pages
inx_page <- htmlParse(getURI(paste0("http://www.sports-reference.com/cfb/players/", letters[i], "-index.html")))
# scrape URLs for each player from each index page
lnk <- unname(xpathSApply(inx_page, "//a/@href"))
# skip first 63 and last 10 links as they are constant on each page
lnk <- lnk[-c(1:63, (length(lnk)-10):length(lnk))]
# only keep links that go to players (exclude schools)
lnk <- lnk[grep("players", lnk)]
# now we have a list of all the URLs to all the players on that index page
# but the URLs are incomplete, so let's complete them so we can use them from
# anywhere
links[[i]] <- paste0("http://www.sports-reference.com", lnk)
}
# unlist into a single character vector
links <- unlist(links)
现在我们有一个大约67,000个网址的向量(看起来像很多玩家,这可能是对的吗?),所以:
其次,抓取每个URL的所有表格以获取其数据,如下所示:
# Go to each URL in the list and scrape all the data from the tables
# this will take some time... don't interrupt it!
# start edit1 here - just so you can see what's changed
# pre-allocate list
all_tables <- vector("list", length = (length(links)))
for(i in 1:length(links)){
print(i)
# error handling - skips to next URL if it gets an error
result <- try(
all_tables[[i]] <- readHTMLTable(links[i], stringsAsFactors = FALSE)
); if(class(result) == "try-error") next;
}
# end edit1 here
# Put player names in the list so we know who the data belong to
# extract names from the URLs to their stats page...
toMatch <- c("http://www.sports-reference.com/cfb/players/", "-1.html")
player_names <- unique (gsub(paste(toMatch,collapse="|"), "", links))
# assign player names to list of tables
names(all_tables) <- player_names
结果如下(这只是输出的片段):
all_tables
$`neli-aasa`
$`neli-aasa`$defense
Year School Conf Class Pos Solo Ast Tot Loss Sk Int Yds Avg TD PD FR Yds TD FF
1 *2007 Utah MWC FR DL 2 1 3 0.0 0.0 0 0 0 0 0 0 0 0
2 *2010 Utah MWC SR DL 4 4 8 2.5 1.5 0 0 0 1 0 0 0 0
$`neli-aasa`$kick_ret
Year School Conf Class Pos Ret Yds Avg TD Ret Yds Avg TD
1 *2007 Utah MWC FR DL 0 0 0 0 0 0
2 *2010 Utah MWC SR DL 2 24 12.0 0 0 0 0
$`neli-aasa`$receiving
Year School Conf Class Pos Rec Yds Avg TD Att Yds Avg TD Plays Yds Avg TD
1 *2007 Utah MWC FR DL 1 41 41.0 0 0 0 0 1 41 41.0 0
2 *2010 Utah MWC SR DL 0 0 0 0 0 0 0 0 0
最后,假设我们只想看看传递表......
# just show passing tables
passing <- lapply(all_tables, function(i) i$passing)
# but lots of NULL in here, and not a convenient format, so...
passing <- do.call(rbind, passing)
我们最终得到了一个可供进一步分析的数据框(也只是一个片段)......
Year School Conf Class Pos Cmp Att Pct Yds Y/A AY/A TD Int Rate
james-aaron 1978 Air Force Ind QB 28 56 50.0 316 5.6 3.6 1 3 92.6
jeff-aaron.1 2000 Alabama-Birmingham CUSA JR QB 100 182 54.9 1135 6.2 6.0 5 3 113.1
jeff-aaron.2 2001 Alabama-Birmingham CUSA SR QB 77 148 52.0 828 5.6 4.3 4 6 99.8