给定一个nxn二进制矩阵(“#”或_),我们如何计算“#”创建的矩形数量
例如,我们在下面有一个矩形:_ _ _ # # # _ _ _ _ _ _ # _ # _ _ _ _ _ _ # _ # _ _ _ _ _ _ # _ # _ _ _ _ _ _ # # # _ _ _
答案 0 :(得分:0)
拿一个完美的NxN方块,你可以这样做:
st='''\
##########
#####----#
##--#----#
##--#----#
##--#----#
##--#----#
#####----#
##########
-####----#
########## '''
def max_size(mat, taken):
"""Find the largest X or a square not taken in the matrix `mat`."""
nrows, ncols = len(mat), len(mat[0])
assert nrows==ncols
dirs=(0,1),(1,0),(1,1) # right, down, right and down
counts = [[0]*ncols for _ in range(nrows)]
for i in reversed(range(nrows)): # for each row
assert len(mat[i]) == ncols # matrix must be rectangular
for j in reversed(range(ncols)): # for each element in the row
if mat[i][j] != taken:
if i < (nrows - 1) and j < (ncols - 1):
add=1+min(counts[i+x][j+y] for x,y in (dirs))
else:
add=1 # edges
counts[i][j]=add
for line in counts: print(line)
return max(c for rows in counts for c in rows) # max X (or Y) number elements
table=[[c for c in s.strip()] for s in st.splitlines()]
print (max_size(table,'#')**2)