我试图用FANN逼近平方函数。代码如下:
#include "../FANN-2.2.0-Source/src/include/doublefann.h"
#include "../FANN-2.2.0-Source/src/include/fann_cpp.h"
#include <cstdlib>
#include <iostream>
using namespace std;
using namespace FANN;
//Remember: fann_type is double!
int main(int argc, char** argv) {
//create a test network: [1,2,1] MLP
neural_net * net = new neural_net;
const unsigned int layers[3] = {1,3,1};
net->create_standard_array(3,layers);
//net->create_standard(num_layers, num_input, num_hidden, num_output);
net->set_learning_rate(0.7f);
net->set_activation_steepness_hidden(0.7);
net->set_activation_steepness_output(0.7);
net->set_activation_function_hidden(SIGMOID_SYMMETRIC_STEPWISE);
net->set_activation_function_output(SIGMOID_SYMMETRIC_STEPWISE);
net->set_training_algorithm(TRAIN_QUICKPROP);
//cout<<net->get_train_error_function()
//exit(0);
//test the number 2
fann_type * testinput = new fann_type;
*testinput = 2;
fann_type * testoutput = new fann_type;
*testoutput = *(net->run(testinput));
double outputasdouble = (double) *testoutput;
cout<<"Test output: "<<outputasdouble<<endl;
//make a training set of x->x^2
training_data * squaredata = new training_data;
squaredata->read_train_from_file("trainingdata.txt");
net->train_on_data(*squaredata,1000,100,0.001);
cout<<endl<<"Easy!";
return 0;
}
trainingdata.txt就是这样:
10 1 1
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
我觉得我已经用API做了一切。然而,当我运行它时,我会收到巨大的错误,这种错误似乎永远不会随着训练而减少。
Test output: -0.0311087
Max epochs 1000. Desired error: 0.0010000000.
Epochs 1. Current error: 633.9928588867. Bit fail 10.
Epochs 100. Current error: 614.3250122070. Bit fail 9.
Epochs 200. Current error: 614.3250122070. Bit fail 9.
Epochs 300. Current error: 614.3250122070. Bit fail 9.
Epochs 400. Current error: 614.3250122070. Bit fail 9.
Epochs 500. Current error: 614.3250122070. Bit fail 9.
Epochs 600. Current error: 614.3250122070. Bit fail 9.
Epochs 700. Current error: 614.3250122070. Bit fail 9.
Epochs 800. Current error: 614.3250122070. Bit fail 9.
Epochs 900. Current error: 614.3250122070. Bit fail 9.
Epochs 1000. Current error: 614.3250122070. Bit fail 9.
Easy!
我做错了什么?
答案 0 :(得分:3)
如果对输出层使用sigmoid函数,则输出将提供范围(0,1)。
您可以有两个选择,(1)将所有输出除以常数,例如1e4。当测试数据到来时,您也将它除以1e4。问题是您可能无法预测大于100的平方数(100 ^ 2 = 1e4);(2)将隐藏和输出层都设置为线性,并且网络将自动学习权重以提供您拥有的任何输出值