我有一个12x13矩阵,看起来像这样:
monat beob werex_00 werex_11 werex_22 werex_33 werex_44 werex_55 werex_66 werex_77 werex_88 werex_99 Min Max
1 22.4930171 9.1418697 8.1558828 8.0312839 10.013298 8.8922567 9.395811 10.7933080 6.5136136 8.721697 10.279974 0.108381 59.65309
2 25.1414834 13.5886794 9.1694683 10.8709352 13.021066 10.3316655 10.579970 17.0555902 7.5915886 11.035921 13.366310 0.924013 66.94970
3 33.8286673 16.3800292 10.0202342 11.3072626 17.674761 16.1370288 15.018551 15.3331395 12.6856599 15.479521 13.929905 -0.794309 78.78572
4 22.0579421 11.9930633 8.4899130 8.2304118 12.987301 7.8763578 8.554007 12.4956321 9.4723508 7.057423 7.688662 -10.496481 49.01380
5 2.5535161 -2.4503375 -4.2354520 -3.6309377 -2.969866 -4.5876993 -5.383716 -3.2612018 -5.2054387 -2.780719 -4.359513 -19.579135 32.54282
6 -2.4405826 -8.8534136 -9.4666674 -7.4249244 -7.820072 -9.1485440 -8.546798 -7.8179739 -7.4222923 -10.978398 -12.644807 -22.821617 18.62139
7 -2.2580848 -6.7569968 -8.3390114 -8.8757506 -8.248305 -8.4171552 -7.760800 -5.7471163 -8.7864075 -6.239596 -8.870658 -22.933219 20.84375
8 -0.3448858 -5.6683742 -5.0467756 -5.7201820 -2.800106 -5.9640095 -5.011171 -3.3557601 -2.8967683 -4.407761 -6.146411 -17.042893 17.86556
9 3.3963303 0.4305926 -0.8554308 -0.9985536 -1.184610 -0.5520555 0.347758 -0.3838614 -0.2199835 -1.174712 -1.630363 -8.533647 19.66163
10 5.1839209 1.6050281 1.1578316 1.8503193 2.327975 1.6633771 1.557532 1.5563157 2.2776155 1.667714 1.333829 -4.686715 31.17342
11 9.2551418 4.4810518 2.9992301 4.9848408 3.824927 4.2413024 3.939119 5.4256008 3.5804488 4.965302 3.790589 -1.615777 43.90991
12 18.2233848 7.7648233 6.3344735 7.3477135 6.573620 7.1884950 7.428654 7.3119002 6.9405167 7.663072 8.342437 0.014096 62.83760
这是某个值的时间线。在下一步中,我用ggplot()
绘制它。因此,我使用melt()
操作来获取绘图中矩阵的形状:
R1_Grundwasserneubildung_Rg1Rg2_Monat_mean_druckreif <- melt(R1_Grundwasserneubildung_Rg1Rg2_Monat_mean, na.rm = FALSE, id.vars="monat")
此数据现在看起来像这样:
Monat Projektion value
1 1 beob 22.4930171
2 2 beob 25.1414834
3 3 beob 33.8286673
4 4 beob 22.0579421
5 5 beob 2.5535161
6 6 beob -2.4405826
7 7 beob -2.2580848
8 8 beob -0.3448858
9 9 beob 3.3963303
10 10 beob 5.1839209
11 11 beob 9.2551418
12 12 beob 18.2233848
13 1 werex_00 9.1418697
14 2 werex_00 13.5886794
15 3 werex_00 16.3800292
16 4 werex_00 11.9930633
17 5 werex_00 -2.4503375
18 6 werex_00 -8.8534136
19 7 werex_00 -6.7569968
20 8 werex_00 -5.6683742
21 9 werex_00 0.4305926
22 10 werex_00 1.6050281
23 11 werex_00 4.4810518
24 12 werex_00 7.7648233
25 1 werex_11 8.1558828
... ... ... ...
我还为融化数据添加了一些新名称(如上所述):
names(R1_Grundwasserneubildung_Rg1Rg2_Monat_mean_druckreif)<-c("Monat","Projektion","value")
下一步为剧情定义一些自定义颜色:
Projektionen_Farben<-c("#000000","#00EEEE","#EEAD0E","#006400","#BDB76B","#EE7600","#68228B","#8B0000","#1E90FF","#EE6363","#556B2F","#D6D6D6","#D6D6D6")
现在我绘制融化的数据:
ggplot(R1_Grundwasserneubildung_Rg1Rg2_Monat_mean_druckreif,
aes(x=Monat,y=value,color=Projektion,group=Projektion)) +
geom_line(size=0.8) +
xlab("Monat") +
ylab("Grundwasserneubildung [mm/Monat]") +
ggtitle("Grundwasserneubildung") +
theme_bw() +
scale_x_continuous(breaks = c(1,2,3,4,5,6,7,8,9,10,11,12),
labels = c("Jan","Feb","Mär","Apr","Mai","Jun","Jul","Aug","Sep","Okt","Nov","Dez")) +
theme(axis.title=element_text(size=15,vjust = 0.3, face="bold"),
title=element_text(size=15,vjust = 1.5,face="bold")) +
scale_colour_manual(values = Projektionen_Farben)
很抱歉,但我没有足够的声誉来发布情节的照片。
现在我想填充/遮蔽Max-line和Min-line之间的空间,比如浅灰色(alpha = .3)。我尝试使用geom_ribbon()
但未找到正确的方法来根据需要定义x
,ymin
和ymax
。有人知道填补这两行之间空间的方法吗?
答案 0 :(得分:1)
使用geom_ribbon()
的原始数据框,并将Min
和Max
列设为ymin
和ymax
。
+ geom_ribbon(data=R1_Grundwasserneubildung_Rg1Rg2_Monat_mean,
aes(x=monat,ymin=Min,ymax=Max),
inherit.aes=FALSE,alpha=0.3,color="grey30")