设定:
我有以下cypher查询,我想提高性能:
START a=node(2) MATCH (a)-[:knowledge]-(x)-[:depends]-(y)-[:knowledge]-(end) RETURN COUNT(DISTINCT end);
返回471(188171 ms)。
现在我只得到一个计数,但后来我可能想得到这些值(本例中为471)。问题是运行大约需要3-4分钟。
图表与许多关系密切相关。运行以下内容可显示节点a(2)中存在多少“知识”类型的边。
START a=node(2) MATCH (a)-[:knowledge]-(x) RETURN COUNT(a);
返回4350(103毫秒)。
对我来说,这似乎不是很多边缘要检查。我能否以某种方式将其拆分以提高性能?
编辑:根据评论,以下是使用个人资料运行查询的结果:
profile START a=node(2) MATCH (a)-[:knowledge]-(x)-[:depends]-(y)-[:knowledge]-(end) RETURN COUNT(DISTINCT end);
==> +---------------------+
==> | COUNT(DISTINCT end) |
==> +---------------------+
==> | 471 |
==> +---------------------+
==> 1 row
==>
==> ColumnFilter(symKeys=[" INTERNAL_AGGREGATEcd2aff18-1c9d-47a8-9217-588cb86bbc1a"], returnItemNames=["COUNT(DISTINCT end)"], _rows=1, _db_hits=0)
==> EagerAggregation(keys=[], aggregates=["( INTERNAL_AGGREGATEcd2aff18-1c9d-47a8-9217-588cb86bbc1a,Distinct)"], _rows=1, _db_hits=0)
==> TraversalMatcher(trail="(a)-[ UNNAMED7:knowledge WHERE true AND true]-(x)-[ UNNAMED8:depends WHERE true AND true]-(y)-[ UNNAMED9:knowledge WHERE true AND true]-(end)", _rows=25638262, _db_hits=25679365)
==> ParameterPipe(_rows=1, _db_hits=0)
答案 0 :(得分:2)
我最终做了以下工作以提高性能:
profile START a=node(2) MATCH (a)-[:knowledge]-(x) WITH DISTINCT x MATCH (x)-[:depends]-(y) WITH DISTINCT y MATCH (y)-[:knowledge]-(end) WITH DISTINCT end RETURN COUNT(end);
==> +------------+
==> | COUNT(end) |
==> +------------+
==> | 471 |
==> +------------+
==> 1 row
==>
==> ColumnFilter(symKeys=[" INTERNAL_AGGREGATE1967576a-d357-457a-b799-adbb16b93048"], returnItemNames=["COUNT(end)"], _rows=1, _db_hits=0)
==> EagerAggregation(keys=[], aggregates=["( INTERNAL_AGGREGATE1967576a-d357-457a-b799-adbb16b93048,Count)"], _rows=1, _db_hits=0)
==> Distinct(_rows=471, _db_hits=0)
==> PatternMatch(g="(end)-[' UNNAMED3']-(y)", _rows=403437, _db_hits=0)
==> Distinct(_rows=735, _db_hits=0)
==> PatternMatch(g="(x)-[' UNNAMED2']-(y)", _rows=1653, _db_hits=0)
==> Distinct(_rows=177, _db_hits=0)
==> TraversalMatcher(trail="(a)-[ UNNAMED1:knowledge WHERE true AND true]-(x)", _rows=4350, _db_hits=4351)
==> ParameterPipe(_rows=1, _db_hits=0)
通过使每个步骤在整体中占很小的一部分,它降低了整体复杂性,并且只跟随匹配的边缘。