为什么std :: vector <bool>更快?</bool>

时间:2013-11-22 17:12:41

标签: c++ performance stdvector

当我实施 Sieve of Eratosthenes 时,我遇到了std::vector<bool>的问题:无法访问原始数据。

所以我决定使用自定义简约实现,我可以访问数据指针。

#ifndef LIB_BITS_T_H
#define LIB_BITS_T_H

#include <algorithm>
template <typename B>

class bits_t{

public:

    typedef B block_t;
    static const size_t block_size = sizeof(block_t) * 8;

    block_t* data;
    size_t size;
    size_t blocks;

    class bit_ref{
    public:
        block_t* const block;
        const block_t mask;

        bit_ref(block_t& block, const block_t mask) noexcept : block(&block), mask(mask){}

        inline void operator=(bool v) const noexcept{
            if(v) *block |= mask;
            else  *block &= ~mask;
        }

        inline operator bool() const noexcept{
            return (bool)(*block & mask);
        }
    };



    bits_t() noexcept : data(nullptr){}

    void resize(const size_t n, const bool v) noexcept{
        block_t fill = v ? ~block_t(0) : block_t(0);
        size = n;
        blocks = (n + block_size - 1) / block_size;
        data = new block_t[blocks];
        std::fill(data, data + blocks, fill);
    }

    inline block_t& block_at_index(const size_t i) const noexcept{
        return data[i / block_size];
    }

    inline size_t index_in_block(const size_t i) const noexcept{
        return i % block_size;
    }

    inline bit_ref operator[](const size_t i) noexcept{
        return bit_ref(block_at_index(i), block_t(1) << index_in_block(i));
    }

    ~bits_t(){
        delete[] data;
    }

};

#endif // LIB_BITS_T_H

代码与/usr/include/c++/4.7/bits/stl_bvector.h中的代码几乎相同,但速度较慢。

我尝试了优化,

#ifndef LIB_BITS_T_H
#define LIB_BITS_T_H

#include <algorithm>
template <typename B>

class bits_t{

const B mask[64] = {
    0b0000000000000000000000000000000000000000000000000000000000000001,
    0b0000000000000000000000000000000000000000000000000000000000000010,
    0b0000000000000000000000000000000000000000000000000000000000000100,
    0b0000000000000000000000000000000000000000000000000000000000001000,
    0b0000000000000000000000000000000000000000000000000000000000010000,
    0b0000000000000000000000000000000000000000000000000000000000100000,
    0b0000000000000000000000000000000000000000000000000000000001000000,
    0b0000000000000000000000000000000000000000000000000000000010000000,
    0b0000000000000000000000000000000000000000000000000000000100000000,
    0b0000000000000000000000000000000000000000000000000000001000000000,
    0b0000000000000000000000000000000000000000000000000000010000000000,
    0b0000000000000000000000000000000000000000000000000000100000000000,
    0b0000000000000000000000000000000000000000000000000001000000000000,
    0b0000000000000000000000000000000000000000000000000010000000000000,
    0b0000000000000000000000000000000000000000000000000100000000000000,
    0b0000000000000000000000000000000000000000000000001000000000000000,
    0b0000000000000000000000000000000000000000000000010000000000000000,
    0b0000000000000000000000000000000000000000000000100000000000000000,
    0b0000000000000000000000000000000000000000000001000000000000000000,
    0b0000000000000000000000000000000000000000000010000000000000000000,
    0b0000000000000000000000000000000000000000000100000000000000000000,
    0b0000000000000000000000000000000000000000001000000000000000000000,
    0b0000000000000000000000000000000000000000010000000000000000000000,
    0b0000000000000000000000000000000000000000100000000000000000000000,
    0b0000000000000000000000000000000000000001000000000000000000000000,
    0b0000000000000000000000000000000000000010000000000000000000000000,
    0b0000000000000000000000000000000000000100000000000000000000000000,
    0b0000000000000000000000000000000000001000000000000000000000000000,
    0b0000000000000000000000000000000000010000000000000000000000000000,
    0b0000000000000000000000000000000000100000000000000000000000000000,
    0b0000000000000000000000000000000001000000000000000000000000000000,
    0b0000000000000000000000000000000010000000000000000000000000000000,
    0b0000000000000000000000000000000100000000000000000000000000000000,
    0b0000000000000000000000000000001000000000000000000000000000000000,
    0b0000000000000000000000000000010000000000000000000000000000000000,
    0b0000000000000000000000000000100000000000000000000000000000000000,
    0b0000000000000000000000000001000000000000000000000000000000000000,
    0b0000000000000000000000000010000000000000000000000000000000000000,
    0b0000000000000000000000000100000000000000000000000000000000000000,
    0b0000000000000000000000001000000000000000000000000000000000000000,
    0b0000000000000000000000010000000000000000000000000000000000000000,
    0b0000000000000000000000100000000000000000000000000000000000000000,
    0b0000000000000000000001000000000000000000000000000000000000000000,
    0b0000000000000000000010000000000000000000000000000000000000000000,
    0b0000000000000000000100000000000000000000000000000000000000000000,
    0b0000000000000000001000000000000000000000000000000000000000000000,
    0b0000000000000000010000000000000000000000000000000000000000000000,
    0b0000000000000000100000000000000000000000000000000000000000000000,
    0b0000000000000001000000000000000000000000000000000000000000000000,
    0b0000000000000010000000000000000000000000000000000000000000000000,
    0b0000000000000100000000000000000000000000000000000000000000000000,
    0b0000000000001000000000000000000000000000000000000000000000000000,
    0b0000000000010000000000000000000000000000000000000000000000000000,
    0b0000000000100000000000000000000000000000000000000000000000000000,
    0b0000000001000000000000000000000000000000000000000000000000000000,
    0b0000000010000000000000000000000000000000000000000000000000000000,
    0b0000000100000000000000000000000000000000000000000000000000000000,
    0b0000001000000000000000000000000000000000000000000000000000000000,
    0b0000010000000000000000000000000000000000000000000000000000000000,
    0b0000100000000000000000000000000000000000000000000000000000000000,
    0b0001000000000000000000000000000000000000000000000000000000000000,
    0b0010000000000000000000000000000000000000000000000000000000000000,
    0b0100000000000000000000000000000000000000000000000000000000000000,
    0b1000000000000000000000000000000000000000000000000000000000000000
};

public:

    typedef B block_t;
    static const size_t block_size = sizeof(block_t) * 8;

    block_t* data;
    size_t size;
    size_t blocks;

    class bit_ref{
    public:
        block_t* const block;
        const block_t mask;

        bit_ref(block_t& block, const block_t mask) noexcept : block(&block), mask(mask){}

        inline void operator=(bool v) const noexcept{
            if(v) *block |= mask;
            else  *block &= ~mask;
        }

        inline operator bool() const noexcept{
            return (bool)(*block & mask);
        }
    };



    bits_t() noexcept : data(nullptr){}

    void resize(const size_t n, const bool v) noexcept{
        block_t fill = v ? ~block_t(0) : block_t(0);
        size = n;
        blocks = (n + block_size - 1) / block_size;
        data = new block_t[blocks];
        std::fill(data, data + blocks, fill);
    }

    inline block_t& block_at_index(const size_t i) const noexcept{
        return data[i / block_size];
    }

    inline size_t index_in_block(const size_t i) const noexcept{
        return i % block_size;
    }

    inline bit_ref operator[](const size_t i) noexcept{
        return bit_ref(block_at_index(i), mask[index_in_block(i)]);
    }

    ~bits_t(){
        delete[] data;
    }

};

#endif // LIB_BITS_T_H

(使用g ++ 4.7 -O3编译)

Eratosthenes筛分算法(33.333.333位)

std::vector<bool> 19.1s

bits_t<size_t> 19.9s

bits_t<size_t> (with lookup table) 19.7s

ctor + resize(33.333.333位)+ dtor

std::vector<bool> 120毫秒

bits_t<size_t> 150毫秒

问题 :减速来自哪里?

2 个答案:

答案 0 :(得分:3)

除了其他一些用户指出的所有问题之外,每次达到当前块限制时,resize都会分配更多内存来添加一个块。 std :: vector将使缓冲区的大小加倍(所以如果你已经有16个块,那么现在你有32个块)。换句话说,他们会做的比你少。

这就是说,你没有做必要的删除&amp;复制,这可能会对您的版本产生“积极的”影响...(“正面”影响速度明智,您不会删除旧数据,也不会将其复制到新缓冲区中。)

此外,std :: vector将正确放大缓冲区,从而复制可能已存在于CPU缓存中的数据。对于您的版本,该缓存会丢失,因为您只是忽略每个resize()上的旧缓冲区。

当一个类处理内存缓冲区时,由于某些原因,通常会实现复制和赋值运算符......您也可以考虑使用shared_ptr&lt;&gt;()。然后隐藏删除,并且该类是一个模板,所以它非常快(它不会添加您自己的版本中没有的任何代码。)

===更新

还有一件事。你是operator []实施:

inline bit_ref operator[](const size_t i) noexcept{
    return bit_ref(block_at_index(i), mask[index_in_block(i)]);
}

(旁注:内联不是必需的,因为您在类中编写代码已经意味着您已经确定了内联功能。)

你只提供一个“非常慢”的非const版本,因为它创建了一个子类。您应该尝试实现一个返回bool的const版本,看看它是否会导致您看到的差异大约为3%。

bool operator[](const size_t i) const noexcept
{
    return (block_at_index(i) & mask[index_in_block(i)]) != 0;
}

此外,使用mask[]数组也会减慢速度。 (1LL&lt;&lt;(index&amp; 0x3F))应该更快(2个CPU指令,0个存储器访问)。

答案 1 :(得分:0)

显然,i % block_size在函数中的包装是罪魁祸首

inline size_t index_in_block ( const size_t i ) const noexcept {
    return i % block_size;
}

inline bit_ref operator[] ( const size_t i ) noexcept {
    return bit_ref( block_at_index( i ), block_t( 1 ) << index_in_block( i ) );
}

所以用

替换上面的代码
inline bit_ref operator[] ( const size_t i ) noexcept {
    return bit_ref( block_at_index( i ), block_t( 1 ) << ( i % block_size ) );
}

解决了这个问题。但是,我仍然不知道为什么会这样。我最好的猜测是我没有得到index_in_block的签名,因此优化器无法以与手动内联方式类似的方式内联此函数。

这是新代码。

#ifndef LIB_BITS_2_T_H
#define LIB_BITS_2_T_H

#include <algorithm>

template <typename B>

class bits_2_t {

public:

    typedef B block_t;
    static const int block_size = sizeof( block_t ) * __CHAR_BIT__;


private:

    block_t* _data;
    size_t _size;
    size_t _blocks;


public:

    class bit_ref {

    public:

        block_t* const block;
        const block_t mask;


        bit_ref ( block_t& block, const block_t mask) noexcept
        : block( &block ), mask( mask ) {}


        inline bool operator= ( const bool v ) const noexcept {

            if ( v ) *block |= mask;
            else     *block &= ~mask;

            return v;

        }

        inline operator bool() const noexcept {
            return (bool)( *block & mask );
        }


    };


    bits_2_t () noexcept : _data( nullptr ), _size( 0 ), _blocks( 0 ) {}

    bits_2_t ( const size_t n ) noexcept : _data( nullptr ), _size( n ) {

        _blocks = number_of_blocks_needed( n );
        _data = new block_t[_blocks];

        const block_t fill( 0 );
        std::fill( _data, _data + _blocks, fill );

    }

    bits_2_t ( const size_t n, const bool v ) noexcept : _data( nullptr ), _size( n ) {

        _blocks = number_of_blocks_needed( n );
        _data = new block_t[_blocks];

        const block_t fill = v ? ~block_t( 0 ) : block_t( 0 );
        std::fill( _data, _data + _blocks, fill );

    }

    void resize ( const size_t n ) noexcept {
        resize( n, false );
    }

    void resize ( const size_t n, const bool v ) noexcept {

        const size_t tmpblocks = number_of_blocks_needed( n );
        const size_t copysize = std::min( _blocks, tmpblocks );

        block_t* tmpdata = new block_t[tmpblocks];
        std::copy( _data, _data + copysize, tmpdata );

        const block_t fill = v ? ~block_t( 0 ) : block_t( 0 );
        std::fill( tmpdata + copysize, tmpdata + tmpblocks, fill );

        delete[] _data;

        _data = tmpdata;
        _blocks = tmpblocks;
        _size = n;

    }

    inline size_t number_of_blocks_needed ( const size_t n ) const noexcept {
        return ( n + block_size - 1 ) / block_size;
    }

    inline block_t& block_at_index ( const size_t i ) const noexcept {
        return _data[i / block_size];
    }

    inline bit_ref operator[] ( const size_t i ) noexcept {
        return bit_ref( block_at_index( i ), block_t( 1 ) << ( i % block_size ) );
    }

    inline bool operator[] ( const size_t i ) const noexcept {
        return (bool)( block_at_index( i ) & ( block_t( 1 ) << ( i % block_size ) ) );
    }

    inline block_t* data () {
        return _data;
    }

    inline const block_t* data () const {
        return _data;
    }

    inline size_t size () const {
        return _size;
    }

    void clear () noexcept {

        delete[] _data;

        _size = 0;
        _blocks = 0;
        _data = nullptr;

    }

    ~bits_2_t () {
        clear();
    }


};

#endif // LIB_BITS_2_T_H

以下是我的amd64机器上的这个新代码的结果,用于最多1.000.000.000的素数(最好是3次运行,实时)。

Eratosthenes筛选,每个数字有1个内存单位(不会跳过2的倍数)。

bits_t的&LT; uint8_t&GT;

真正的0m23.614s用户0m23.493s sys 0m0.092s

bits_t的&LT; uint16_t&GT;

real 0m24.399s user 0m24.294s sys 0m0.084s

bits_t的&LT; uint32_t的&GT;

real 0m23.501s user 0m23.372s sys 0m0.108s &lt; - best

bits_t的&LT; uint64_t中&GT;

real 0m24.393s user 0m24.304s sys 0m0.068s

的std ::矢量&lt; BOOL&GT;

real 0m24.362s user 0m24.276s sys 0m0.056s

的std ::矢量&lt; uint8_t&GT;

real 0m38.303s user 0m37.570s sys 0m0.683s

以下是筛子的代码(其中(...)应由您选择的位数组替换。)

#include <iostream>

typedef (...) array_t;

int main ( int argc, char const *argv[] ) {

    if ( argc != 2 ) {
        std::cout << "#0 missing" << std::endl;
        return 1;
    }

    const size_t count = std::stoull( argv[1] );
    array_t prime( count, true );
    prime[0] = prime[1] = false;


    for ( size_t k = 2 ; k * k < count ; ++k ) {

        if ( prime[k] ) {

            for ( size_t i = k * k ; i < count ; i += k ) {
                prime[i] = false;
            }

        }

    }

    return 0;
}