微软是否有可以使用的良好FFT?
所以我做了欠自己的FFT,它起作用了一些情况,但现在全部......
就像我得到它一样 f(t)= 10 * sin(2 * pi * 3000 * t)+ 20 * sin(1000 * 2 * PI * t) 它会工作,但如果我补充 + 5 *罪(2 * pi * 100 * T)开始表演有趣吗?现在在Matlab中它运行良好但不在我的关闭中,而且我的fft似乎只在图像中返回正确的数字而不是真正的...
这是我的代码:
enter code here
public struct polar1
{
public double real;
public double img;
};
private float Fs;
private int N;
private polar1 [] F;
private int R;
public DSPclass(float[] DSP1,int f1)
{
N = DSP1.Length;
R = DSP1.Length;
F = new polar1[N];
Fs = (float)f1;
}
public void FFT1(float[] DSP1)
{
polar1[] x = new polar1[DSP1.Length];
for (int v = 0; v < N; v++)
{
x[v].real = DSP1[v];
x[v].img = 0;
}
F = FFT(x);
int temp;
}
public polar1[] FFT(polar1[] x)
{
int N2 = x.Length;
polar1[] X = new polar1[N2];
if (N2 == 1)
{
return x;
}
polar1[] odd = new polar1[N2 / 2];
polar1[] even = new polar1[N2 / 2];
polar1[] Y_Odd = new polar1[N2 / 2];
polar1[] Y_Even = new polar1[N2 / 2];
for (int t = 0; t < N2 / 2; t++)
{
even[t].img = x[t * 2].img;
even[t].real = x[t * 2].real;
odd[t].img = x[(t * 2) + 1].img;
odd[t].real = x[(t * 2) + 1].real;
}
Y_Even = FFT(even);
Y_Odd = FFT(odd);
polar1 temp4;
for (int k = 0; k < (N2 / 2); k++)
{
temp4 = Complex1(k, N2);
X[k].real = Y_Even[k].real + (Y_Odd[k].real * temp4.real);
X[k + (N2 / 2)].real = Y_Even[k].real - (Y_Odd[k].real * temp4.real);
X[k].img = Y_Even[k].img + (Y_Odd[k].real * temp4.img);
X[k + (N2 / 2)].img = Y_Even[k].img - (Y_Odd[k].real * temp4.img);
}
return X;
}
public double magnitude( polar1 temp)
{
double tempD;
tempD = Math.Sqrt ( (temp.img * temp.img) + (temp.real * temp.real));
return tempD;
}
public polar1 Complex2(int K, int N, int F3)
{
polar1 temp;
double temp1;
temp1 = (2D * K *F3) / N;
if (temp1 % 2 == 0 || temp1 == 0)
{
temp.real = 1D;
temp.img = 0D;
}
else if ((temp1 - 1) % 2 == 0)
{
temp.real = -1D;
temp.img = 0D;
}
else if ((temp1 / .5D) - 1 % 2 == 0)
{
if ((temp1 - .5D) % 2 == 0)
{
temp.real = 0D;
temp.img = -1D;
}
else
{
temp.real = 0D;
temp.img = 1D;
}
}
else
{
temp.real = Math.Cos(temp1 * Math.PI);
temp.img = -1D * Math.Sin(temp1 * Math.PI);
}
return temp;
}
public polar1 Complex1(int K, int N3)
{
polar1 temp;
double temp1;
temp1 = (2D * Math.PI *K) / N3;
temp.real = Math.Cos(temp1);
temp.img = Math.Sin(temp1);
return temp;
}
public int Apm(double[] img, double[] real)
{
for (int i = 0; i < R; i++)
{
img[i] = F[i].img;
real[i] = F[i].real;
}
return R;
}
public int frequencies(float [] freq, float [] Ctemp)
{
bool flag = false;
bool flagD = false;
float tempOld = 0;
float tempNew =0;
int tempc = 0;
int counter = 0;
for (int i = 0; i < R; i++)
{
if (((i / N) * Fs) >= (Fs / 2))
{
return counter;
}
if ((int)F[i].img != 0 )
{
flag = true;
tempOld = (float)(Math.Abs(F[i].img));
}
else
{
if (flagD == true)
{
freq[counter] = ((float)tempc / (float)N) * Fs;
Ctemp[counter] = tempNew; //magnitude(F[tempc]);
counter++;
flagD = false;
}
flag = false;
tempOld = 0;
tempNew = 0;
}
if(flag == true)
{
if (tempOld > tempNew)
{
tempNew = tempOld;
tempc = i;
flagD = true;
}
}
}
return counter;
}
}