如何计算python中非线性曲线拟合的确定系数(R2)和均方根误差(RMSE)。以下代码执行直到曲线拟合。那么如何计算R2和RMSE?
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def func(x, a, b, c):
return a * np.exp(-b * x) + c
x = np.linspace(0,4,50)
y = func(x, 2.5, 1.3, 0.5)
yn = y + 0.2*np.random.normal(size=len(x))
popt, pcov = curve_fit(func, x, yn)
plt.figure()
plt.plot(x, yn, 'ko', label="Original Noised Data")
plt.plot(x, func(x, *popt), 'r-', label="Fitted Curve")
plt.legend()
plt.show()
答案 0 :(得分:5)
你可以这样做:
print "Mean Squared Error: ", np.mean((y-func(x, *popt))**2)
ss_res = np.dot((yn - func(x, *popt)),(yn - func(x, *popt)))
ymean = np.mean(yn)
ss_tot = np.dot((yn-ymean),(yn-ymean))
print "Mean R :", 1-ss_res/ss_tot
这是直接获取定义,例如在维基百科中: http://en.wikipedia.org/wiki/Coefficient_of_determination#Definitions
答案 1 :(得分:0)
MartinBöschen,不是y
,而是yn
:
np.mean((y-func(x, *popt))**2)
请阅读有关均方根误差(RMSE)的信息:http://en.wikipedia.org/wiki/Regression_analysis
residuals = yn - func(x,*popt)
print "RMSE",(scipy.sum(residuals**2)/(residuals.size-2))**0.5
现在它计算为Excel 2003 Analysis ToolPak。