我一直在使用UCCntu 12.04 LTS和GCC编译我的作业代码一段时间。但是,最近我遇到了两个问题如下:
如何解决这些问题?我特别着迷于第一个。任何帮助或建议表示赞赏。提前致谢。
代码如下:
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <stdlib.h>
#define N 599
long double
factorial(long double n)
{
//Here s is the free parameter which is increased by one in each step and
//pro is the initial product and by setting pro to be 0 we also cover the
//case of zero factorial.
int s = 1;
long double pro = 1;
//Here pro stands for product.
if (n < 0)
printf("Factorial is not defined for a negative number \n");
else {
while (n >= s) {
pro *= s;
s++;
}
return pro;
}
}
int main()
{
// Since the function given is the standard normal distribution
// probability density function we have mean = 0 and variance = 1.
// Hence we also have z = x; while dealing with only positive values of
// x and keeping in mind that the PDF is symmetric around the mean.
long double * summand1 = malloc(N * sizeof(long double));
long double * summand2 = malloc(N * sizeof(long double));
int p = 0, k, z[5] = {0, 3, 5, 10, 20};
long double sum1[5] = {0}, sum2[5] = {0} , factor = 1.0;
for (p = 0; p <= 4; p++)
{
for (k = 0; k <= N; k++)
{
summand1[k] = (1 / sqrtl(M_PI * 2) )* powl(-1, k) * powl(z[p], 2 * k + 1) / ( factorial(k) * (2 * k + 1) * powl(2, k));
sum1[p] += summand1[k];
}
//Wolfamalpha site gives the same value here
for (k = 0; k <= N; k++)
{
factor *= (2 * k + 1);
summand2[k] = ((1 / sqrtl(M_PI * 2) ) * powl(z[p], 2 * k + 1) / factor);
//printf("%Le \n", factor);
sum2[p] += summand2[k];
}
sum2[p] = sum2[p] * expl((-powl(z[p],2)) / 2);
}
for (p = 0; p < 4; p++)
{
printf("The sum obtained for z between %d - %d \
\nusing the first formula is %Lf \n", z[p], z[p+1], sum1[p+1]);
printf("The sum obtained for z between %d - %d \
\nusing the second formula is %Lf \n", z[p], z[p+1], sum2[p+1]);
}
return 0;
}
没有最外层for循环的工作代码是
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <stdlib.h>
#define N 1200
long double
factorial(long double n)
{
//Here s is the free parameter which is increased by one in each step and
//pro is the initial product and by setting pro to be 0 we also cover the
//case of zero factorial.
int s = 1;
long double pro = 1;
//Here pro stands for product.
if (n < 0)
printf("Factorial is not defined for a negative number \n");
else {
while (n >= s) {
pro *= s;
s++;
}
return pro;
}
}
int main()
{
// Since the function given is the standard normal distribution
// probability density function we have mean = 0 and variance = 1.
// Hence we also have z = x; while dealing with only positive values of
// x and keeping in mind that the PDF is symmetric around the mean.
long double * summand1 = malloc(N * sizeof(long double));
long double * summand2 = malloc(N * sizeof(long double));
int k, z = 3;
long double sum1 = 0, sum2 = 0, pro = 1.0;
for (k = 0; k <= N; k++)
{
summand1[k] = (1 / sqrtl(M_PI * 2) )* powl(-1, k) * powl(z, 2 * k + 1) / ( factorial(k) * (2 * k + 1) * powl(2, k));
sum1 += summand1[k];
}
//Wolfamalpha site gives the same value here
printf("The sum obtained for z between 0-3 using the first formula is %Lf \n", sum1);
for (k = 0; k <= N; k++)
{
pro *= (2 * k + 1);
summand2[k] = ((1 / sqrtl(M_PI * 2) * powl(z, 2 * k + 1) / pro));
//printf("%Le \n", pro);
sum2 += summand2[k];
}
sum2 = sum2 * expl((-powl(z,2)) / 2);
printf("The sum obtained for z between 0-3 using the second formula is %Lf \n", sum2);
return 0;
}
答案 0 :(得分:1)
我很确定问题是factor
在外循环中没有被设置回1 ..
factor *= (2 * k + 1);
(在计算sum2
的循环中。)
在第二个版本中,提供的工作以z = 3
开头然而,在第一个循环中,由于在到达z [2]时你没有在p上的迭代之间清除它,它已经是一个巨大的数字。
编辑:精确的可能帮助..
基本上你有一个巨大的数字powl(z[p], 2 * k + 1)
除以另一个巨大的数字factor
。巨大的浮点数会失去精确度。避免这种情况的方法是尽快进行分工。
而不是先计算powl(z[p], 2 * k + 1)
并除以factor
:
- (z [p] z [p] ...... * z [p])/(1 * 3 * 5 * ...(2 * k + 1))`
重新排列计算:(z [p] / 1)*(z [p] ^ 2/3)*(z [p] ^ 2/5)...(z [p] ^ 2 /(2 * K + 1))
你可以在sumand2计算和summand1
中的类似技巧中执行此操作