词搜索算法分割故障

时间:2013-11-16 18:56:44

标签: c++ algorithm

我一直在研究单词搜索算法很长时间以来我认为我做得很好并且决定测试限制。我创建了程序,使文件尽可能大。所以我制作了一个矩阵10000 * 10000(10000000个字母),从左上角到右下角的字很长。事情是它与4000 * 4000矩阵一起使用但随后它变得更大它只是崩溃。我试图评论所有其他检查可能的位置,并留下正确的一个,它完美的工作,即使10000 * 10000矩阵,但一旦我添加其他检查它停止,我不知道为什么。有什么建议吗?

我的代码:

    #include <iostream>     //Might Be:
    #include <string>       // <----->
    #include <fstream>      // /-\  (1)/\               /\(3)
    #include <new>          //  |       \               /
    #include <cstdlib>      //  |        \             /
                            //  |         \           /
                            //  |          \         /
                            //  |           \       /
                            // \_/       (2)\/     \/(4)
                            //

    using namespace std;
                                        //Loop[4] //Loop[5]
    int * Possibles(int Widht, int Height, int Poz, int Poz1, int Leng, int * Possible)
    {
        if(Poz1 < Widht - Leng + 1) // To right
        {
            Possible[0] = 1;
        }

        if(Poz1 >= Leng - 1) // To left
        {
            Possible[1] = 1;
        }

        if(Poz <= Height - Leng) // From top to bottom
        {
            Possible[2] = 1;
        }

        if(Poz >= Leng) // From bottom to top
        {
            Possible[3] = 1;
        }

        if(Poz + Leng <= Height && Poz1 + Leng <= Widht) //(2)
        {
            Possible[4] = 1;
        }

        if(Poz + Leng <= Height && Poz1 - Leng + 1 >= 0) //(4)
        {
            Possible[5] = 1;
        }

        if(Poz - Leng + 1 >= 0 && Poz1 - Leng + 1 >= 0) //(1)
        {
            Possible[6] = 1;
        }

        if(Poz - Leng + 1 >= 0 && Poz1 + Leng <= Widht) //(3)
        {
            Possible[7] = 1;
        }

        return Possible;
    }

    int * Zero(int * Possible)
    {
            Possible[0] = 0;
            Possible[1] = 0;
            Possible[2] = 0;
            Possible[3] = 0;
            Possible[4] = 0;
            Possible[5] = 0;
            Possible[6] = 0;
            Possible[7] = 0;

            return Possible;
    }

    string Next(string * NewMatrix, int Height, int Widht)
    {
        return NewMatrix[Height].substr(Widht, 1);
    }

    bool Find(string Word, int Poz, int Poz1, int Look, string Have, string * Matrix, int * Possible, int Backup, int Backup1)
    {
        if(Have == Word)
        {
            return true;
            return Possible;
        }

        string NewLet = Word.substr(Look, 1);

        if(Possible[0] == 1)
        {
            if(NewLet == Next(Matrix, Poz, Poz1 + 1))
            {
                Have += NewLet;

                return Find(Word, Poz, Poz1 + 1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[0] = 0;
                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        if(Possible[1] == 1)
        {
            if(NewLet == Next(Matrix, Poz, Poz1 - 1))
            {
                Have += NewLet;

                return Find(Word, Poz, Poz1 - 1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[1] = 0;
                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        if(Possible[2] == 1)
        {
            if(NewLet == Next(Matrix, Poz + 1, Poz1))
            {
                Have += NewLet;

                return Find(Word, Poz + 1, Poz1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[2] = 0;
                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        if(Possible[3] == 1)
        {
            if(NewLet == Next(Matrix, Poz - 1, Poz1))
            {
                Have += NewLet;

                return Find(Word, Poz - 1, Poz1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[3] = 0;
                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        if(Possible[4] == 1)
        {
            if(NewLet == Next(Matrix, Poz + 1, Poz1 + 1))
            {
                Have += NewLet;

                return Find(Word, Poz + 1, Poz1 + 1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[4] = 0;
                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        if(Possible[5] == 1)
        {
            if(NewLet == Next(Matrix, Poz + 1, Poz1 - 1))
            {
                Have += NewLet;

                return Find(Word, Poz + 1, Poz1 - 1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[5] = 0;

                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        if(Possible[6] == 1)
        {
            if(NewLet == Next(Matrix, Poz - 1, Poz1 - 1))
            {
                Have += NewLet;

                return Find(Word, Poz - 1, Poz1 - 1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[6] = 0;
                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        if(Possible[7] == 1)
        {
            if(NewLet == Next(Matrix, Poz - 1, Poz1 + 1))
            {
                Have += NewLet;

                return Find(Word, Poz - 1, Poz1 + 1, Look + 1, Have, Matrix, Possible, Backup, Backup1);
            }
            else
            {
                Possible[7] = 0;
                Have = Word.substr(0, 1);

                return Find(Word, Backup, Backup1, 1, Have, Matrix, Possible, Backup, Backup1);
            }
        }

        return false;
    }

    string Diro(int * Possible)
    {
        string Dir;

        bool Next = true;

        if(Possible[0] == 1 && Next == true)
        {
            Dir = " From right to left";
            Next = false;
        }

        if(Possible[1] == 1 && Next == true)
        {
            Dir = " From left to right";
            Next = false;
        }

        if(Possible[2] == 1 && Next == true)
        {
            Dir = " From top to bottom";
            Next = false;
        }

        if(Possible[3] == 1 && Next == true)
        {
            Dir = " From bottom to top";
            Next = false;
        }

        if(Possible[4] == 1 && Next == true)
        {
            Dir = " ";
            Next = false;
        }

        if(Possible[5] == 1 && Next == true)
        {
            Dir = " ";
            Next = false;
        }

        if(Possible[6] == 1 && Next == true)
        {
            Dir = " ";
            Next = false;
        }

        if(Possible[7] == 1 && Next == true)
        {
            Dir = " ";
            Next = false;
        }

        return Dir;
    }

    int main()
    {
        int Height = 0, Widht = 0, Numb = 0;

        int Loop[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};

        int * Possible = new int[8];

        string Dir, Search, Tempo, Temp;

        ifstream Data("C:/Users/Magician/AppData/Local/VirtualStore/Program Files (x86)/CodeBlocks/MakeMaze/Files/Maze.txt");

        Data >> Widht >> Height;

        string * NewMatrix = new string[Height];

        while(Loop[7] < Height)
        {
            Tempo = "";
            Loop[8] = 0;

            while(Loop[8] < Widht)
            {
                Data >> Temp;
                Tempo += Temp;
                Loop[8]++;
            }

            NewMatrix[Loop[7]] = Tempo;

            Loop[7]++;
        }

        Data >> Numb;

        string * Words = new string[Numb];

        while(Loop[2] < Numb)
        {
            Data >> Words[Loop[2]];

            Loop[2]++;
        }

        Data.close();

        while(Loop[3] < Numb)
        {
            Search = Words[Loop[3]].substr(0, 1);
            Loop[4] = 0;

            while(Loop[4] < Height)
            {
                Loop[5] = 0;

                while(Loop[5] < Widht)
                {
                    if(NewMatrix[Loop[4]].substr(Loop[5], 1) == Search)
                    {
                        Zero(Possible);
                        Possibles(Widht, Height, Loop[4], Loop[5], Words[Loop[3]].size(), Possible);

                        if(Find(Words[Loop[3]], Loop[4], Loop[5], 1, Search, NewMatrix, Possible, Loop[4], Loop[5]))
                        {
                            cout << Words[Loop[3]] << " At: " << Loop[4] + 1 << " collumn, symbol " << Loop[5] + 1 << " " << Diro(Possible) << endl;

                            Loop[5] = Widht;
                            Loop[4] = Height;
                        }
                    }

                    Loop[5]++;
                }

                Loop[4]++;
            }

            Loop[3]++;
        }

        delete [] Possible;
        delete [] Words;
        delete [] NewMatrix;

        return 0;
    }

如果你不理解我之前的写作:当我评论每一个if(Possible [] ==) 除了if(可能[5] == 1)函数Find()算法工作,然后所有允许它不。我试过100 * 100矩阵,有很多单词可以找到,一切都还可以。

1 个答案:

答案 0 :(得分:1)

  1. Possibles中的一个条件不正确:

    /* INCORRECT: Should be  [ Poz >= Leng - 1 ] */
    if(Poz >= Leng) // From bottom to top
    {
        Possible[3] = 1;
    }
    

    但这只是一个逻辑错误,不应该导致分段错误。

  2. 看起来您遇到了堆栈溢出。

    让我们做简单的计算。对于10000 * 10000矩阵和10000的字长,如果您开始在矩阵的左上角调用Find(),则可能有三个方向。在最坏的情况下,Find()将遍历大约10000 * 3个元素。注意Func()中有3个字符串实例(32位VC2013中的sizeof(字符串)== 24),加上各种整数。单个帧的大小很容易超过100个字节。由于您正在使用递归调用,这可能导致堆栈使用率至少为10000 * 3 * 100 = 3000000bytes =约。 3M。

    此数字不是很大,但足以导致堆栈溢出,因为Windows的默认堆栈大小为1M。 (http://msdn.microsoft.com/en-us/library/8cxs58a6.aspx

  3. 改善建议

    这是我用来解决这类matrix traversal问题的模式。

    首先,定义一个常量数组来保持移动的偏移量(Moore neighborhood):

    const int delta[8][2] = {
        { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 },
        { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
    };
    

    其次,使用单个for检查所有方向:

    int initial_x = .., initial_y = ..;
    for (int dir = 0; dir < 8; dir++) {
        for (int count = 0; count < WORD_LENGTH; count++) {
            int current_x = initial_x + delta[dir][0] * count;
            int current_y = initial_y + delta[dir][1] * count;
            if (IS_INVALID(current_x, current_y)) {
                break;
            }
        }
    }
    

    最后,插入各种代码和标志来完成程序。

    另一个提示:您可以使用char类型来获取和比较字符串中的单个字符(使用word[idx]获取idx的{​​{1}}字符。这可能比使用word快得多。