我正在开发一个专门的四叉树来做一些生物信息学。 qtree的类型是:
type base = A | C | G | T | ROOT ;;
type quad_tree = Nd of bases * quad_tree * quad_tree * quad_tree * quad_tree
| Empty
| Leaf of int ref ;;
let init_quad_tree = Nd(ROOT, Empty,Empty,Empty,Empty);;
let new_node b = Nd(b,Empty,Empty,Empty,Empty);;
现在,在构建或行走时,要对这些树进行匹配,最后得到类似的结果:
let rec add_node base k qtree =
let rec aux k' accum qtree' =
if k' = k then
match qtree' with
| Nd(bse, Empty, cc, gg, tt) -> Nd(bse, (Leaf(ref accum)),cc,gg,tt)
| Nd(bse, aa, Empty, gg, tt) -> Nd(bse, aa,(Leaf(ref accum)),gg,tt)
| Nd(bse, aa, cc, Empty, tt) -> Nd(bse, aa,cc,(Leaf(ref accum)),tt)
| Nd(bse, aa, cc, gg, Empty) -> Nd(bse, aa,cc,gg,(Leaf(ref accum)))
| Leaf _ -> qtree'
| Empty -> Leaf(ref accum)
| _ -> qtree'
else
match qtree' with
| Leaf(iref) -> iref := !iref + 1; qtree'
| Nd(bse, Empty,Empty,Empty,Empty) -> (*all empty*)
(
match base with
| A -> Nd(bse,(new_node base),Empty,Empty,Empty)
| C -> Nd(bse,Empty,(new_node base),Empty,Empty)
| G -> Nd(bse,Empty,Empty,(new_node base),Empty)
| T -> Nd(bse,Empty,Empty,Empty,(new_node base))
| _ -> qtree'
)
...
| Nd(bse, Empty,(Nd(_,_,_,_,_) as c),(Nd(_,_,_,_,_) as g),(Nd(_,_,_,_,_) as t)) ->
(
match base with
| A -> Nd(bse,(new_node base),(aux (k'+1) (accum+1) c),(aux (k'+1) (accum+1) g),(aux (k'+1) (accum+1) t))
| C -> Nd(bse,Empty,(aux (k'+1)(accum+1) c),(aux (k'+1)(accum+1) g),(aux (k'+1)(accum+1) t))
| G -> Nd(bse,Empty,(aux (k'+1)(accum+1) c),(aux (k'+1)(accum+1) g),(aux (k'+1)(accum+1) t))
| T -> Nd(bse,Empty,(aux (k'+1)(accum+1) c),(aux (k'+1)(accum+1) g),(aux (k'+1)(accum+1) t))
| _ -> qtree'
)
...
| Nd(bse, (Nd(_,_,_,_,_) as a),(Nd(_,_,_,_,_) as c),(Nd(_,_,_,_,_) as g),(Nd(_,_,_,_,_) as t)) ->
...
你明白了,基本上我需要覆盖那里的所有16个组合(4个子树,可以是空的或Nd)。这是很多打字,而且容易出错。
但是,它是一个非常规则的结构,可以用于代码生成。我打算使用Ruby脚本实际生成这个代码,但我想知道这是否可以使用campl4或新的-ppx风格的“宏”(缺少一个更好的术语)?如果是这样,我怎么能开始这两个方向?
答案 0 :(得分:1)
在功能惯用树中,每个节点都是其子树的根,即使该子树中的每个其他节点都是空的。您将要清除显式ROOT定义,并将counter属性合并到叶节点:
type base = A | C | G | T ;;
type quad_tree =
| Node of base * int ref * quad_tree * quad_tree * quad_tree * quad_tree
| Empty
但是当你进入它时,你可能只是将该引用设为显式int,以便您可以使用持久数据结构:
type quad_tree =
| Node of base * int * quad_tree ...
| Empty
根据我对你想要做的事情的理解(每个节点代表完全匹配其路径的字符串),步行/构建不应该是那么复杂 - 只需让自己创建一个新版本的树每次。一个丑陋的版本:
let shorter str = String.sub 1 ((String.len str) - 1);;
let rec add_str base str = match base with
| Empty ->
let ch = String.get str 0 in
if ch = 'A' then add_str Node('A', 0, Empty, Empty, Empty, Empty) (shorter str)
else if ch = 'C' then add_str Node('C', 0, Empty, Empty, Empty, Empty) (shorter str)
...
| Node(b, v, aa, cc, gg, tt) ->
let len = String.length str in
if len = 0 then Node(b, v + 1, aa, cc, gg, tt) else
let ch = String.get str 0 in
if ch = 'A' then match aa with
| Empty -> Node(b, v, (add_str Empty str), cc, gg, tt)
| Node(b', v', ... , tt') -> add_str Node(b', v', ... , tt') (shorter str)
else if ch = 'C' then match cc with
| Empty -> Node(b, v, aa, (add_str Empty str), gg, tt)
| Node(b', v', ... , tt') -> add_str Node(b', v', ... , tt') (shorter str)
...