我正在玩fork / join并考虑以下示例:
App1
:2个for循环在ArrayList
中生成一些随机数并将其传递给fork
MyTask
(Fork):迭代ArrayLists
并将所有数字相加,然后返回值
import java.util.ArrayList;
import java.util.concurrent.ForkJoinPool;
public class App1 {
ArrayList list = new ArrayList();
static final ForkJoinPool mainPool = new ForkJoinPool();
public App1() {
for (int i = 0; i < 10; i++) {
list.clear();
for (int j = 1000; j <= 100000; j++) {
int random = 1 + (int)(Math.random() * ((100 - 1) + 1));
list.add(random);
}
mainPool.invoke(new MyTask(list));
}
// At the end showing all results
// System.out.println (result1 + result2 + result3...);
}
public static void main(String[] args) {
App1 app = new App1();
}
}
import java.util.ArrayList;
import java.util.concurrent.RecursiveTask;
public class MyTask extends RecursiveTask<Integer> {
ArrayList list = new ArrayList();
int result;
public MyTask(ArrayList list) {
this.list = list;
}
@Override
protected Integer compute() {
for(int i=0; i<=list.size(); i++){
result += (int)list.get(i); // adding up all numbers
}
return result;
}
}
我不确定自己是否走在正确的轨道上。我也不知道,如何从叉子上收集所有结果 有人可以查看我的代码吗?
答案 0 :(得分:0)
只需使用invoke
的结果:
Integer result = mainPool.invoke(new MyTask(list));
System.out.println(i + "\t" + result);
答案 1 :(得分:0)
无论您是否需要退货,都需要根据需要延长RecursiveAction
或RecursiveTask
。
在这两个类中,您需要覆盖以下函数:
protected abstract void compute();//in RecursiveAction
protected abstract V compute(); //in RecursiveTask
以下是修改后的快速排序。请注意这一点并尝试实现自己:
public class ForkJoinQuicksortTask extends RecursiveAction {
static final int SEQUENTIAL_THRESHOLD = 10000;
private final int[] a;
private final int left;
private final int right;
public ForkJoinQuicksortTask(int[] a) {
this(a, 0, a.length - 1);
}
private ForkJoinQuicksortTask(int[] a, int left, int right) {
this.a = a;
this.left = left;
this.right = right;
}
@Override
protected void compute() {
if (serialThresholdMet()) {
Arrays.sort(a, left, right + 1);
} else {
int pivotIndex = partition(a, left, right);
ForkJoinQuicksortTask t1 = new ForkJoinQuicksortTask(a, left, pivotIndex-1);
ForkJoinQuicksortTask t2 = new ForkJoinQuicksortTask(a, pivotIndex + 1, right);
t1.fork();
t2.compute();
t1.join();
}
}
int partition(int[] a, int p, int r){
int i=p-1;
int x=a[r];
for(int j=p;j<r;j++){
if(a[j]<x){
i++;
swap(a, i, j);
}
}
i++;
swap(a, i, r);
return i;
}
void swap(int[] a, int p, int r){
int t=a[p];
a[p]=a[r];
a[r]=t;
}
private boolean serialThresholdMet() {
return right - left < SEQUENTIAL_THRESHOLD;
}
public static void main(String[] args){
ForkJoinPool fjPool = new ForkJoinPool();
int[] a=new int[3333344];
for(int i=0;i<a.length;i++){
int k=(int)(Math.random()*22222);
a[i]=k;
}
ForkJoinQuicksortTask forkJoinQuicksortTask=new ForkJoinQuicksortTask(a, 0, a.length-1);
long start=System.nanoTime();
fjPool.invoke(forkJoinQuicksortTask);
System.out.println("Time: "+ (System.nanoTime()-start));
}
}
答案 2 :(得分:0)
虽然您的代码看起来很好,但您使用的是ForkJoinPool。这是一个可以分成独立子任务的任务工具和可以通过多线程提高速度。
你的任务可能不够大,无法真正从多线程中受益,但由于这是一个学习练习,所以你仍然需要将主要任务分成子任务,但你要做的只是计算整个阵列一次。
您可以在代码中执行的操作:
使用更适合的不同多线程模式。
分叉任务并移交数组内的开始和结束位置,然后在完成这些子任务后总结结果。
由于您可能对后者感兴趣,下面是一个如何执行此操作的示例:
public class MyTask extends RecursiveTask<Integer> {
final ArrayList<Integer> list;
final int start, end;
public MyTask(ArrayList<Integer> list, int start, int end) {
this.list = list;
this.start = start;
this.end = end;
}
@Override
protected Integer compute() {
if (end - start > 10) { // is this task big enough to justify more threading?
final int half = (end + start) / 2;
final MyTask firstHalf = new MyTask(list, start, half);
final MyTask secondHalf = new MyTask(list, half+1, end);
invokeAll(firstHalf, secondHalf);
return firstHalf.get() + secondHalf.get();
} else {
int result = 0;
for(int i=start; i<=end; i++){
result += list.get(i);
}
return result;
}
}
}
答案 3 :(得分:0)
您使用RecursiveTask
的方式并不正确。您必须递归调用该任务,请查看下面的可能解决方案。
所以最后所有工作都以递归的< THRESHOLD
部分分割。
<强>更新强>
你可能想看看Java Concurrent Animated,只需下载jar并执行它,它有一个很好的视觉解释如何工作。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
public class RecursiveListSum {
private static class RecursiveSum extends RecursiveTask<Long> {
private static final long serialVersionUID = 1L;
private static final int THRESHOLD = 1000;
private final List<Integer> list;
private final int begin;
private final int end;
public RecursiveSum(List<Integer> list, int begin, int end) {
super();
this.list = list;
this.begin = begin;
this.end = end;
}
@Override
protected Long compute() {
final int size = end - begin;
// if the work to be done is below some threshold, just compute directly.
if (size < THRESHOLD) {
long sum = 0;
for (int i = begin; i < end; i++)
sum += list.get(i);
return sum;
} else {
// split the work to other tasks - recursive (that's why it is called recursive task!)
final int middle = begin + ((end - begin) / 2);
RecursiveSum sum1 = new RecursiveSum(list, begin, middle);
// invoke the first portion -> will be invoked in thread pool
sum1.fork();
RecursiveSum sum2 = new RecursiveSum(list, middle, end);
// now do a blocking! compute on the second task and wait for the result of the first task.
return sum2.compute() + sum1.join();
}
}
}
public static void main(String[] args) {
// First fill the list
List<Integer> list = new ArrayList<>();
long expectedSum = 0;
for (int i = 0; i < 10000; i++) {
int random = 1 + (int) (Math.random() * ((100 - 1) + 1));
list.add(random);
expectedSum += random;
}
System.out.println("expected sum: " + expectedSum);
// now let the RecursiveTask calc the sum again.
final ForkJoinPool forkJoinPool = new ForkJoinPool(Runtime.getRuntime().availableProcessors());
final RecursiveSum recursiveSum = new RecursiveSum(list, 0, list.size());
long recSum = forkJoinPool.invoke(recursiveSum);
System.out.println("recursive-sum: " + recSum);
}
}