我目前正在玩多处理和队列。 我编写了一段代码来从mongoDB导出数据,将其映射到关系(平面)结构,将所有值转换为字符串并将它们插入到mysql中。
这些步骤中的每一步都作为一个进程提交并给出导入/导出队列,对于在父进程中处理的mongoDB导出是安全的。
正如您将在下面看到的,我使用队列和子进程在读取时自行终止"无"从队列中。我目前遇到的问题是,如果子进程遇到未处理的异常,则父进程无法识别,其余只是保持运行。我想要发生的是整个shebang退出并且最多再加重孩子的错误。
我有两个问题:
我正在使用python 2.7。
以下是我的代码的基本部分:
# Establish communication queues
mongo_input_result_q = multiprocessing.Queue()
mapper_result_q = multiprocessing.Queue()
converter_result_q = multiprocessing.Queue()
[...]
# create child processes
# all processes generated here are subclasses of "multiprocessing.Process"
# create mapper
mappers = [mongo_relational_mapper.MongoRelationalMapper(mongo_input_result_q, mapper_result_q, columns, 1000)
for i in range(10)]
# create datatype converter, converts everything to str
converters = [datatype_converter.DatatypeConverter(mapper_result_q, converter_result_q, 'str', 1000)
for i in range(10)]
# create mysql writer
# I create a list of writers. currently only one,
# but I have the option to parallellize it further
writers = [mysql_inserter.MySqlWriter(mysql_host, mysql_user, mysql_passwd, mysql_schema, converter_result_q
, columns, 'w_'+mysql_table, 1000) for i in range(1)]
# starting mapper
for mapper in mappers:
mapper.start()
time.sleep(1)
# starting converter
for converter in converters:
converter.start()
# starting writer
for writer in writers:
writer.start()
[...初始化mongo db连接...]
# put each dataset read to queue for the mapper
for row in mongo_collection.find({inc_column: {"$gte": start}}):
mongo_input_result_q.put(row)
count += 1
if count % log_counter == 0:
print 'Mongo Reader' + " " + str(count)
print "MongoReader done"
# Processes are terminated when they read "None" object from queue
# now that reading is finished, put None for each mapper in the queue so they terminate themselves
# the same for all followup processes
for mapper in mappers:
mongo_input_result_q.put(None)
for mapper in mappers:
mapper.join()
for converter in converters:
mapper_result_q.put(None)
for converter in converters:
converter.join()
for writer in writers:
converter_result_q.put(None)
for writer in writers:
writer.join()
答案 0 :(得分:25)
我不知道标准练习,但我发现有可靠的多处理我设计方法/类/等。专门用于多处理。否则你真的不知道另一方面发生了什么(除非我错过了一些机制)。
具体而言我所做的是:
multiprocessing.Process
或制作专门支持多处理的函数(包装必要时无法控制的函数)multiprocessing.Queue
try: ... except Exception as e
中。然后当出现意外情况时,发送错误包:
最终结果是工作进程可以存活很长时间,并且可以让您知道出现问题时发生了什么。他们会安静地死去,因为你可以在全部异常之后处理你需要做的事情,并且你也知道什么时候需要重新启动一个工人。
同样,我刚刚通过反复试验来达到这种模式,所以我不知道它的标准是多少。这有助于你所要求的吗?
答案 1 :(得分:19)
为什么不让Process处理自己的异常,例如:
import multiprocessing as mp
import traceback
class Process(mp.Process):
def __init__(self, *args, **kwargs):
mp.Process.__init__(self, *args, **kwargs)
self._pconn, self._cconn = mp.Pipe()
self._exception = None
def run(self):
try:
mp.Process.run(self)
self._cconn.send(None)
except Exception as e:
tb = traceback.format_exc()
self._cconn.send((e, tb))
# raise e # You can still rise this exception if you need to
@property
def exception(self):
if self._pconn.poll():
self._exception = self._pconn.recv()
return self._exception
现在你有了错误和追溯:
def target():
raise ValueError('Something went wrong...')
p = Process(target = target)
p.start()
p.join()
if p.exception:
error, traceback = p.exception
print traceback
此致 马立克
答案 2 :(得分:6)
感谢kobejohn我找到了一个很好且稳定的解决方案。
我创建了一个multiprocessing.Process的子类,它实现了一些函数并覆盖了run()
方法,将一个新的saferun方法包装到try-catch块中。此类需要一个feedback_queue来初始化,用于将信息,调试,错误消息报告回父级。该类中的日志方法是包的全局定义的日志函数的包装器:
class EtlStepProcess(multiprocessing.Process):
def __init__(self, feedback_queue):
multiprocessing.Process.__init__(self)
self.feedback_queue = feedback_queue
def log_info(self, message):
log_info(self.feedback_queue, message, self.name)
def log_debug(self, message):
log_debug(self.feedback_queue, message, self.name)
def log_error(self, err):
log_error(self.feedback_queue, err, self.name)
def saferun(self):
"""Method to be run in sub-process; can be overridden in sub-class"""
if self._target:
self._target(*self._args, **self._kwargs)
def run(self):
try:
self.saferun()
except Exception as e:
self.log_error(e)
raise e
return
我已经从EtlStepProcess继承了我的所有其他流程步骤。要运行的代码在saferun()方法中实现,而不是运行。这种方式我不必在它周围添加try catch块,因为这已经由run()方法完成。 例如:
class MySqlWriter(EtlStepProcess):
def __init__(self, mysql_host, mysql_user, mysql_passwd, mysql_schema, mysql_table, columns, commit_count,
input_queue, feedback_queue):
EtlStepProcess.__init__(self, feedback_queue)
self.mysql_host = mysql_host
self.mysql_user = mysql_user
self.mysql_passwd = mysql_passwd
self.mysql_schema = mysql_schema
self.mysql_table = mysql_table
self.columns = columns
self.commit_count = commit_count
self.input_queue = input_queue
def saferun(self):
self.log_info(self.name + " started")
#create mysql connection
engine = sqlalchemy.create_engine('mysql://' + self.mysql_user + ':' + self.mysql_passwd + '@' + self.mysql_host + '/' + self.mysql_schema)
meta = sqlalchemy.MetaData()
table = sqlalchemy.Table(self.mysql_table, meta, autoload=True, autoload_with=engine)
connection = engine.connect()
try:
self.log_info("start MySQL insert")
counter = 0
row_list = []
while True:
next_row = self.input_queue.get()
if isinstance(next_row, Terminator):
if counter % self.commit_count != 0:
connection.execute(table.insert(), row_list)
# Poison pill means we should exit
break
row_list.append(next_row)
counter += 1
if counter % self.commit_count == 0:
connection.execute(table.insert(), row_list)
del row_list[:]
self.log_debug(self.name + ' ' + str(counter))
finally:
connection.close()
return
在我的主文件中,我提交了一个完成所有工作的Process,并给它一个feedback_queue。此过程启动所有步骤,然后从mongoDB读取并将值放入初始队列。我的主进程侦听反馈队列并打印所有日志消息。如果它收到一个错误日志,它会打印错误并终止它的子节点,而子节点在死亡之前也会终止它的所有子节点。
if __name__ == '__main__':
feedback_q = multiprocessing.Queue()
p = multiprocessing.Process(target=mongo_python_export, args=(feedback_q,))
p.start()
while p.is_alive():
fb = feedback_q.get()
if fb["type"] == "error":
p.terminate()
print "ERROR in " + fb["process"] + "\n"
for child in multiprocessing.active_children():
child.terminate()
else:
print datetime.datetime.fromtimestamp(fb["timestamp"]).strftime('%Y-%m-%d %H:%M:%S') + " " + \
fb["process"] + ": " + fb["message"]
p.join()
我考虑制作一个模块并将其放在github上,但我必须先做一些清理和评论。
答案 3 :(得分:0)
@mrkwjc的solution很简单,因此易于理解和实现,但是此解决方案有一个缺点。当我们的进程很少时,如果任何一个进程出错,我们都希望停止所有进程,则需要等到所有进程完成后才能检查p.exception
。下面是解决此问题的代码(即,当一个孩子有错误时,我们也会终止另一个孩子):
import multiprocessing
import traceback
from time import sleep
class Process(multiprocessing.Process):
"""
Class which returns child Exceptions to Parent.
https://stackoverflow.com/a/33599967/4992248
"""
def __init__(self, *args, **kwargs):
multiprocessing.Process.__init__(self, *args, **kwargs)
self._parent_conn, self._child_conn = multiprocessing.Pipe()
self._exception = None
def run(self):
try:
multiprocessing.Process.run(self)
self._child_conn.send(None)
except Exception as e:
tb = traceback.format_exc()
self._child_conn.send((e, tb))
# raise e # You can still rise this exception if you need to
@property
def exception(self):
if self._parent_conn.poll():
self._exception = self._parent_conn.recv()
return self._exception
class Task_1:
def do_something(self, queue):
queue.put(dict(users=2))
class Task_2:
def do_something(self, queue):
queue.put(dict(users=5))
def main():
try:
task_1 = Task_1()
task_2 = Task_2()
# Example of multiprocessing which is used:
# https://eli.thegreenplace.net/2012/01/16/python-parallelizing-cpu-bound-tasks-with-multiprocessing/
task_1_queue = multiprocessing.Queue()
task_2_queue = multiprocessing.Queue()
task_1_process = Process(
target=task_1.do_something,
kwargs=dict(queue=task_1_queue))
task_2_process = Process(
target=task_2.do_something,
kwargs=dict(queue=task_2_queue))
task_1_process.start()
task_2_process.start()
while task_1_process.is_alive() or task_2_process.is_alive():
sleep(10)
if task_1_process.exception:
error, task_1_traceback = task_1_process.exception
# Do not wait until task_2 is finished
task_2_process.terminate()
raise ChildProcessError(task_1_traceback)
if task_2_process.exception:
error, task_2_traceback = task_2_process.exception
# Do not wait until task_1 is finished
task_1_process.terminate()
raise ChildProcessError(task_2_traceback)
task_1_process.join()
task_2_process.join()
task_1_results = task_1_queue.get()
task_2_results = task_2_queue.get()
task_1_users = task_1_results['users']
task_2_users = task_2_results['users']
except Exception:
# Here usually I send email notification with error.
print('traceback:', traceback.format_exc())
if __name__ == "__main__":
main()