我需要重新创建一个类似于下面在Excel中创建的图表。我希望使用matplotlib,但似乎无法找到任何关于如何做这样的图表的例子或参考。我需要根据性能阈值对条形进行着色,并显示阈值。谁能指出我正确的方向?我确实需要能够用Python做到这一点。
答案 0 :(得分:18)
我得跑,但这里有一些让你开始的事情:
import numpy as np
import matplotlib
matplotlib.rcParams['text.usetex'] = False
import matplotlib.pyplot as plt
import pandas
df = pandas.DataFrame(np.random.uniform(size=37)*100, columns=['A'])
threshold = 75
fig, ax = plt.subplots(figsize=(8,3))
good = df['A'][df['A'] >= threshold]
bad = df['A'][df['A'] < threshold]
ax.bar(left=good.index, height=good, align='center', color='ForestGreen', zorder=5)
ax.bar(left=bad.index, height=bad, align='center', color='Firebrick', zorder=5)
ax.axhline(y=threshold, linewidth=2, color='ForestGreen', zorder=0)
ax.set_xticks(df.index)
ax.set_xlim(left=df.index[0]-0.75, right=df.index[-1]+0.75)
def annotateBars(row, ax=ax):
if row['A'] < 20:
color = 'black'
vertalign = 'bottom'
vertpad = 2
else:
color = 'white'
vertalign = 'top'
vertpad = -2
ax.text(row.name, row['A'] + vertpad, "{:.1f}%".format(row['A']),
zorder=10, rotation=90, color=color,
horizontalalignment='center',
verticalalignment=vertalign,
fontsize=8, weight='heavy')
junk = df.apply(annotateBars, ax=ax, axis=1)
这给了我:
答案 1 :(得分:1)
现在可以更简洁地绘制:
Axes.bar_label
自动标记条形 (requires matplotlib 3.4.0+)Axes.bar
有一个 color
参数,可以接受一组颜色(例如通过 numpy.where
)所以现在只需要几行,例如使用保罗的样本df = pd.DataFrame({'A': np.random.uniform(size=35) * 100})
:
fig, ax = plt.subplots(figsize=(9, 3))
threshold = 75
# plot bars as blue if A > threshold, else red
color = np.where(df.A > threshold, 'blue', 'red')
ax.bar(x=df.index, height=df.A, color=color)
# add bar labels
ax.bar_label(ax.containers[0], fmt='%.1f%%')
# add threshold line
ax.axhline(threshold, alpha=0.5, zorder=0)
或者对于多个阈值,只需根据需要更新 color
(例如通过 numpy.select
):
upper, lower = 75, 25
color = np.select([df.A > upper, df.A < lower], ['blue', 'red'], default='gray')
请注意,颜色数组也可以传递给其他条形图助手:
df.plot.bar(y='A', color=color, ax=ax)
df.A.plot.bar(color=color, ax=ax)
seaborn.barplot
(如 palette
):
sns.barplot(x=df.index, y=df.A, palette=color, ax=ax)