我一直在做一些性能测试,以提高我正在写的宠物项目的性能。这是一个非常数字化的密集型应用程序,因此我一直在使用Numpy来提高计算性能。
但是,以下性能测试的结果非常令人惊讶......
测试源代码 (更新了提升和批量提交的测试用例)
import timeit
numpySetup = """
import numpy
left = numpy.array([1.0,0.0,0.0])
right = numpy.array([0.0,1.0,0.0])
"""
hoistSetup = numpySetup +'hoist = numpy.cross\n'
pythonSetup = """
left = [1.0,0.0,0.0]
right = [0.0,1.0,0.0]
"""
numpyBatchSetup = """
import numpy
l = numpy.array([1.0,0.0,0.0])
left = numpy.array([l]*10000)
r = numpy.array([0.0,1.0,0.0])
right = numpy.array([r]*10000)
"""
pythonCrossCode = """
x = ((left[1] * right[2]) - (left[2] * right[1]))
y = ((left[2] * right[0]) - (left[0] * right[2]))
z = ((left[0] * right[1]) - (left[1] * right[0]))
"""
pythonCross = timeit.Timer(pythonCrossCode, pythonSetup)
numpyCross = timeit.Timer ('numpy.cross(left, right)' , numpySetup)
hybridCross = timeit.Timer(pythonCrossCode, numpySetup)
hoistCross = timeit.Timer('hoist(left, right)', hoistSetup)
batchCross = timeit.Timer('numpy.cross(left, right)', numpyBatchSetup)
print 'Python Cross Product : %4.6f ' % pythonCross.timeit(1000000)
print 'Numpy Cross Product : %4.6f ' % numpyCross.timeit(1000000)
print 'Hybrid Cross Product : %4.6f ' % hybridCross.timeit(1000000)
print 'Hoist Cross Product : %4.6f ' % hoistCross.timeit(1000000)
# 100 batches of 10000 each is equivalent to 1000000
print 'Batch Cross Product : %4.6f ' % batchCross.timeit(100)
原始结果
Python Cross Product : 0.754945
Numpy Cross Product : 20.752983
Hybrid Cross Product : 4.467417
最终结果
Python Cross Product : 0.894334
Numpy Cross Product : 21.099040
Hybrid Cross Product : 4.467194
Hoist Cross Product : 20.896225
Batch Cross Product : 0.262964
毋庸置疑,这不是我预期的结果。纯Python版本的执行速度比Numpy快30倍。其他测试中的Numpy性能优于Python等效(这是预期的结果)。
所以,我有两个相关的问题:
答案 0 :(得分:6)
尝试使用更大的数组。我认为调用numpy
方法的成本仅仅超过了Python版本所需的简单几个列表访问。如果你处理更大的数组,我认为你会看到numpy
的大赢。
答案 1 :(得分:5)
numpy.cross只处理大量案件并做一些额外的副本。
一般来说,numpy对于像矩阵乘法或反演这样的慢速事件来说足够快 - 但对像这样的小向量的操作有很多开销。
答案 2 :(得分:1)
为了减少numpy调用开销,你可以尝试使用cython作为调用numpy函数的中间函数。
有关详细信息,请参阅Fast numerical computations with Cython (SciPy 2009)。
答案 3 :(得分:0)
优秀的帖子!我认为这种比较实际上并不公平。 Batch Cross Product提供包含所有向量的叉积的数组,而Python Cross Product一次给出一个向量。如果您需要一次性计算所有交叉产品当然批处理更好,但如果您需要单独计算每个交叉产品,则应包括访问数组的开销。此外,如果交叉产品(如果是上一个交叉产品的函数)应该修改批量实现。