c#为已知点找到合适的列表链

时间:2013-11-09 00:00:35

标签: c# algorithm recursion generic-list

   var route1 = new List<int> { 1, 2, 3 };
   var route2 = new List<int> { 6, 7, 8 };
   var route3 = new List<int> { 3, 7, 13 };
   var route4 = new List<int> { 8, 9, 10 };

问题是;我的起点是2,我的目标点是9.我的目标是找到合适的路线链。对于这种情况,我的路线将是[route1 - route3 - route2 - route4]。但我不知道如何解决这个问题,我找不到算法。答案可以是伪代码或c#implementmantation。

我的方式是那样的;我的路线1中的起点(2)和路线4中的目标点(9)。然后我需要找到连接route1和route4的中间路由。我需要算法或技术..

2 个答案:

答案 0 :(得分:0)

你走了:

        var route1 = new List<int> { 1, 2, 3 };
        var route2 = new List<int> { 6, 7, 8 };
        var route3 = new List<int> { 3, 7, 13 };
        var route4 = new List<int> { 8, 9, 10 };

        List<List<int>> routeList = new List<List<int>>();
        routeList.Add(route1);
        routeList.Add(route2);
        routeList.Add(route3);
        routeList.Add(route4);

        int startPoint = 2;
        int endPoint = 9;


        List<List<int>> finalRouteOrder = new List<List<int>>();

        //  Find starting route.
        List<int> currentRoute = routeList.Find(a => a.Contains(startPoint));

        //  Don't need that route in the list anymore.
        routeList.Remove(currentRoute);

        //  Add it to our final list of routes.
        finalRouteOrder.Add(currentRoute);

        bool done = false;
        while (!done)
        {
            foreach (int x in currentRoute)
            {
                currentRoute = routeList.Find(a => a.Contains(x));
                if (currentRoute != null)
                {
                    finalRouteOrder.Add(currentRoute);  // add this route toi our final list of routes
                    routeList.Remove(currentRoute);  // remove that list since we are done with it.

                    if (currentRoute.Contains(endPoint))
                    {
                        done = true;
                    }
                    break;
                }
                if (done)
                    break;

            }
            if (done)
                break;
        }

        //  finalRouteOrder contains the routes in order.

        MessageBox.Show("Done.");

答案 1 :(得分:0)

如果存在,则此代码将查找任意两点之间的路由。路线可能并不总是最短的(例如从3到13将路由1提供给路线3)。它还使用递归 - 这似乎是你想要的(基于你的标签)。 vistedRoutes包含遍历的路由。

   static void Main(string[] args)
    {
        var route1 = new List<int> { 1, 2, 3 };
        var route2 = new List<int> { 6, 7, 8 };
        var route3 = new List<int> { 3, 7, 13 };
        var route4 = new List<int> { 8, 9, 10 };

        List<List<int>> routeList = new List<List<int>>();
        routeList.Add(route1);
        routeList.Add(route2);
        routeList.Add(route3);
        routeList.Add(route4);

        int start = 3;
        int end = 9;

        var vistedRoutes = new List<List<int>>();

        foreach(var route in routeList.FindAll(r => r.Contains(start)))
        {
            vistedRoutes.Add(route);
            routeList.Remove(route);
            FindPath(vistedRoutes, routeList, start, end);

            if (vistedRoutes.Last().Contains(end))
            {
                break;
            }
        }

        Console.WriteLine("done");
    }

    static void FindPath(List<List<int>> visitedRoutes, List<List<int>> remainingRoutes, int start, int end)
    {
        if (visitedRoutes.Last().Contains(end))
        {
            return;
        }
        for (int i = 0; i < remainingRoutes.Count; i++ )
        {
            var route = remainingRoutes[i];

            foreach (var point in route)
            {
                if (visitedRoutes.Last().Contains(point))
                {
                    visitedRoutes.Add(route);
                    var newRemainingRoutes = new List<List<int>>(remainingRoutes);
                    newRemainingRoutes.Remove(route);
                    FindPath(visitedRoutes, newRemainingRoutes, start, end);
                    if (visitedRoutes.Last().Contains(end))
                    {
                        return;
                    }
                    else
                    {
                        visitedRoutes.Remove(route);
                    }
                }
            }
        }
    }