Matplotlib funcanimation blit慢

时间:2013-11-07 18:23:25

标签: python matplotlib

我在Matplotlib中遇到慢动画问题。我正在模拟一个模拟结果,最简单的可视化方法是使用随时间变化颜色的矩形数组。

根据建议here,我正在使用blitting来绘制每帧中变化的(小部分)矩形。我也尝试使用FuncAnimation来实现它,但是当使用Blit = True时,脚本运行得慢得多。

我想知道这是因为我将所有矩形返回到FuncAnimation,所以即使它们没有改变,它也会重绘所有这些。有没有办法将每一帧的不同艺术家传递给FuncAnimation?我试着传递一个已经改变的元组(“animate”函数中注释掉的块)的元组,但这导致了看似随机的动画帧...

使用:

$ python2 [script].py blit
$ python2 [script].py anim

谢谢!

import sys
import numpy as np
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import matplotlib.animation as manim

def animate_data(plot_type):
    """
    Use:
    python2 plot_anim.py [option]
    option = anim OR blit
    """

    # dimension parameters
    Nx = 30
    Ny = 20
    numtimes = 100
    size = 0.5

    if plot_type == "blit":
        # "interactive mode on"
        plt.ion()
    # Prepare to do initial plot
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())
    # An array in which to store the rectangle artists
    rects = np.empty((Nx, Ny), dtype=object)
    # Generate initial figure of all green rectangles
    for (i,j),k in np.ndenumerate(rects):
        color = 'green'
        rects[i, j] = plt.Rectangle([i - size / 2, j - size / 2],
                size, size, facecolor=color, edgecolor=color)
        ax.add_patch(rects[i, j])
    ax.autoscale_view()

    # "Old" method using fig.canvas.blit()
    if plot_type == "blit":
        plt.show()
        fig.canvas.draw()
        # Step through time updating the rectangles
        for tind in range(1, numtimes):
            updated_array = update_colors(rects)
            for (i, j), val in np.ndenumerate(updated_array):
                if val:
                    ax.draw_artist(rects[i, j])
            fig.canvas.blit(ax.bbox)

    # New method using FuncAnimate
    elif plot_type == "anim":
        def animate(tind):
            updated_array = update_colors(rects)
#            # Just pass the updated artists to FuncAnimation
#            toupdate = []
#            for (i, j), val in np.ndenumerate(updated_array):
#                if val:
#                    toupdate.append(rects[i, j])
#            return tuple(toupdate)
            return tuple(rects.reshape(-1))
        ani = manim.FuncAnimation(fig, animate, frames=numtimes,
                interval=10, blit=True, repeat=False)
        plt.show()

    return

# A function to randomly update a few rectangles
def update_colors(rects):
    updated_array = np.zeros(rects.shape)
    for (i, j), c in np.ndenumerate(rects):
        rand_val = np.random.rand()
        if rand_val < 0.003:
            rects[i, j].set_facecolor('red')
            rects[i, j].set_edgecolor('red')
            updated_array[i, j] = 1
    return updated_array

if __name__ == "__main__":
    if len(sys.argv) > 1:
        plot_type = sys.argv[1]
    else:
        plot_type = "blit"
    animate_data(plot_type)

1 个答案:

答案 0 :(得分:3)

每帧更新600个矩形非常慢,代码中的cbar_blit模式更快,因为您只更新了颜色被更改的矩形。您可以使用PatchCollection加速绘图,这是代码:

import numpy as np
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import matplotlib.animation as manim
from matplotlib.collections import PatchCollection

Nx = 30
Ny = 20
numtimes = 100

size = 0.5

x, y = np.ogrid[-1:1:30j, -1:1:20j]

data = np.zeros((numtimes, Nx, Ny))

for i in range(numtimes):
    data[i] = (x-i*0.02+1)**2 + y**2

colors = plt.cm.rainbow(data)

fig, ax = plt.subplots()

rects = []
for (i,j),c in np.ndenumerate(data[0]):
    rect = plt.Rectangle([i - size / 2, j - size / 2],size, size)
    rects.append(rect)

collection = PatchCollection(rects, animated=True)

ax.add_collection(collection)
ax.autoscale_view(True)


def animate(tind):
    c = colors[tind].reshape(-1, 4)
    collection.set_facecolors(c)    
    return (collection,)

ani = manim.FuncAnimation(fig, animate, frames=numtimes,
        interval=10, blit=True, repeat=False)

plt.show()