我在Matplotlib中遇到慢动画问题。我正在模拟一个模拟结果,最简单的可视化方法是使用随时间变化颜色的矩形数组。
根据建议here,我正在使用blitting来绘制每帧中变化的(小部分)矩形。我也尝试使用FuncAnimation来实现它,但是当使用Blit = True时,脚本运行得慢得多。
我想知道这是因为我将所有矩形返回到FuncAnimation,所以即使它们没有改变,它也会重绘所有这些。有没有办法将每一帧的不同艺术家传递给FuncAnimation?我试着传递一个已经改变的元组(“animate”函数中注释掉的块)的元组,但这导致了看似随机的动画帧...
使用:
$ python2 [script].py blit
$ python2 [script].py anim
谢谢!
import sys
import numpy as np
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import matplotlib.animation as manim
def animate_data(plot_type):
"""
Use:
python2 plot_anim.py [option]
option = anim OR blit
"""
# dimension parameters
Nx = 30
Ny = 20
numtimes = 100
size = 0.5
if plot_type == "blit":
# "interactive mode on"
plt.ion()
# Prepare to do initial plot
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal', 'box')
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
# An array in which to store the rectangle artists
rects = np.empty((Nx, Ny), dtype=object)
# Generate initial figure of all green rectangles
for (i,j),k in np.ndenumerate(rects):
color = 'green'
rects[i, j] = plt.Rectangle([i - size / 2, j - size / 2],
size, size, facecolor=color, edgecolor=color)
ax.add_patch(rects[i, j])
ax.autoscale_view()
# "Old" method using fig.canvas.blit()
if plot_type == "blit":
plt.show()
fig.canvas.draw()
# Step through time updating the rectangles
for tind in range(1, numtimes):
updated_array = update_colors(rects)
for (i, j), val in np.ndenumerate(updated_array):
if val:
ax.draw_artist(rects[i, j])
fig.canvas.blit(ax.bbox)
# New method using FuncAnimate
elif plot_type == "anim":
def animate(tind):
updated_array = update_colors(rects)
# # Just pass the updated artists to FuncAnimation
# toupdate = []
# for (i, j), val in np.ndenumerate(updated_array):
# if val:
# toupdate.append(rects[i, j])
# return tuple(toupdate)
return tuple(rects.reshape(-1))
ani = manim.FuncAnimation(fig, animate, frames=numtimes,
interval=10, blit=True, repeat=False)
plt.show()
return
# A function to randomly update a few rectangles
def update_colors(rects):
updated_array = np.zeros(rects.shape)
for (i, j), c in np.ndenumerate(rects):
rand_val = np.random.rand()
if rand_val < 0.003:
rects[i, j].set_facecolor('red')
rects[i, j].set_edgecolor('red')
updated_array[i, j] = 1
return updated_array
if __name__ == "__main__":
if len(sys.argv) > 1:
plot_type = sys.argv[1]
else:
plot_type = "blit"
animate_data(plot_type)
答案 0 :(得分:3)
每帧更新600个矩形非常慢,代码中的cbar_blit
模式更快,因为您只更新了颜色被更改的矩形。您可以使用PatchCollection
加速绘图,这是代码:
import numpy as np
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import matplotlib.animation as manim
from matplotlib.collections import PatchCollection
Nx = 30
Ny = 20
numtimes = 100
size = 0.5
x, y = np.ogrid[-1:1:30j, -1:1:20j]
data = np.zeros((numtimes, Nx, Ny))
for i in range(numtimes):
data[i] = (x-i*0.02+1)**2 + y**2
colors = plt.cm.rainbow(data)
fig, ax = plt.subplots()
rects = []
for (i,j),c in np.ndenumerate(data[0]):
rect = plt.Rectangle([i - size / 2, j - size / 2],size, size)
rects.append(rect)
collection = PatchCollection(rects, animated=True)
ax.add_collection(collection)
ax.autoscale_view(True)
def animate(tind):
c = colors[tind].reshape(-1, 4)
collection.set_facecolors(c)
return (collection,)
ani = manim.FuncAnimation(fig, animate, frames=numtimes,
interval=10, blit=True, repeat=False)
plt.show()