此问题是Stata: replace, if, forvalues的后续问题。考虑这些数据:
set seed 123456
set obs 5000
g firmid = "firm" + string(_n) /* Observation (firm) id */
g nw = floor(100*runiform()) /* Number of workers in a firm */
g double lat = 39+runiform() /* Latitude in decimal degree of a firm */
g double lon = -76+runiform() /* Longitude in decimal degree of a firm */
前10个观察结果是:
+--------------------------------------+
| firmid nw lat lon |
|--------------------------------------|
1. | firm1 81 39.915526 -75.505018 |
2. | firm2 35 39.548523 -75.201567 |
3. | firm3 10 39.657866 -75.17988 |
4. | firm4 83 39.957938 -75.898837 |
5. | firm5 56 39.575881 -75.169157 |
6. | firm6 73 39.886184 -75.857255 |
7. | firm7 27 39.33288 -75.724665 |
8. | firm8 75 39.165549 -75.96502 |
9. | firm9 64 39.688819 -75.232764 |
10. | firm10 76 39.012228 -75.166272 |
+--------------------------------------+
我需要计算公司1和所有其他公司之间的距离。因此, vincenty 命令如下所示:
. scalar theLat = 39.915526
. scalar theLon = -75.505018
. vincenty lat lon theLat theLon, hav(distance_km) inkm
vincenty命令创建 distance_km 变量,该变量在每个观察点和公司1之间有距离。在这里,我手动复制并粘贴39.915526和-75.505018这两个数字。
问题1 :提取这些数字的语法是什么?
现在,我可以保持距离_km <= 2的观察结果。并且,
. egen near_nw_sum = sum(nw)
将在公司1公里范围内创建工人总数。(或者,崩溃命令可以完成工作。)
问题2 :我必须为所有公司执行此操作,最终数据应如下所示:
+-----------------------------------------------------------------+
| firmid nw lat lon near_nw_sum |
|-----------------------------------------------------------------|
1. | firm1 81 39.915526 -75.505018 (# workers near firm1) |
2. | firm2 35 39.548523 -75.201567 (# workers near firm2) |
3. | firm3 10 39.657866 -75.17988 (# workers near firm3) |
4. | firm4 83 39.957938 -75.898837 (# workers near firm4) |
5. | firm5 56 39.575881 -75.169157 (# workers near firm5) |
6. | firm6 73 39.886184 -75.857255 (# workers near firm6) |
7. | firm7 27 39.33288 -75.724665 (# workers near firm7) |
8. | firm8 75 39.165549 -75.96502 (# workers near firm8) |
9. | firm9 64 39.688819 -75.232764 (# workers near firm9) |
10. | firm10 76 39.012228 -75.166272 (# workers near firm10) |
+-----------------------------------------------------------------+
创建 near_nw_sum 变量是我的最终目标。我需要你的帮助来解决我的弱数据管理技巧。
答案 0 :(得分:2)
以下内容与here基本相同,基于您的“最终目标”。同样,根据原始数据集的大小,它可能很有用。joinby
创建观察值,因此您可能超出Stata限制。但是,我相信它能做到你想要的。
clear all
set more off
set seed 123456
set obs 10
g firmid = _n /* Observation (firm) id */
g nw = floor(100*runiform()) /* Number of workers in a firm */
g double lat = 39+runiform() /* Latitude in decimal degree of a firm */
g double lon = -76+runiform() /* Longitude in decimal degree of a firm */
gen dum = 1
list
* joinby procedure
tempfile main
save "`main'"
rename (firmid lat lon nw) =0
joinby dum using "`main'"
drop dum
* Pretty print
sort firmid0 firmid
order firmid0 firmid
list, sepby(firmid0)
* Uncomment if you do not want to include workers in the "base" firm.
*drop if firmid0 == firmid
* Compute distance
vincenty lat0 lon0 lat lon, hav(distance_km) inkm
keep if distance_km <= 40 // an arbitrary distance
list, sepby(firmid0)
* Compute workers of nearby-firms
collapse (sum) nw_sum=nw (mean) nw0 lat0 lon0, by(firmid0)
list
它所做的是形成企业的成对组合来计算距离和附近企业的工人总数。这里不需要像问题1中那样提取标量。此外,不需要将变量firmid
转换为字符串变得复杂。
以下克服了Stata限制观察数量的问题。
clear all
set more off
* Create empty database
gen x = .
tempfile results
save "`results'", replace
* Create input for exercise
set seed 123456
set obs 500
g firmid = _n /* Observation (firm) id */
g nw = floor(100*runiform()) /* Number of workers in a firm */
g double lat = 39+runiform() /* Latitude in decimal degree of a firm */
g double lon = -76+runiform() /* Longitude in decimal degree of a firm */
gen dum = 1
*list
* Save number of firms
local size = _N
display "`size'"
* joinby procedure
tempfile main
save "`main'"
timer clear 1
timer clear 2
timer clear 3
timer clear 4
quietly {
timer on 1
forvalues i=1/`size'{
timer on 2
use "`main'" in `i', clear // assumed sorted on firmid
rename (firmid lat lon nw) =0
joinby dum using "`main'", unmatched(using)
drop _merge dum
order firmid0 firmid
timer off 2
timer on 3
vincenty lat0 lon0 lat lon, hav(dist) inkm
timer off 3
keep if dist <= 40 // an arbitrary distance
timer on 4
collapse (sum) nw_sum=nw (mean) nw0 lat0 lon0, by(firmid0)
append using "`results'"
save "`results'", replace
timer off 4
}
timer off 1
}
use "`results'", clear
sort firmid0
drop x
list
timer list
然而效率低下,使用timer
进行的一些测试表明,大部分计算时间都会进入vincenty
命令,而这些命令将无法逃脱。以下是使用英特尔酷睿i5处理器和传统硬盘(不是SSD)进行10,000次观察的时间(以秒为单位)。定时器1是总数,而2,3,4是组件(大约)。定时器3对应vincenty
:
. timer list
1: 1953.99 / 1 = 1953.9940
2: 169.19 / 10000 = 0.0169
3: 1669.95 / 10000 = 0.1670
4: 94.47 / 10000 = 0.0094
当然,请注意,在两个代码中都会进行重复的距离计算(例如,计算firm1-firm2和firm2-firm1之间的距离),这可以避免。目前,110,000次观测需要很长时间。从积极的方面来说,我注意到与第一次设置中的相同数量的观察相比,第二次设置需要非常少的RAM。事实上,我的4GB机器与后者冻结了。
另请注意,即使我使用与您相同的种子,数据也是不同的,因为我创建了不同数量的观察结果(不是5000),这对变量创建过程产生了影响。
(顺便说一下,如果您想将值保存为标量,可以使用subscripting:scalar latitude = lat[1]
)。