为什么我的SVM-Light无法正常工作?

时间:2013-11-04 16:26:21

标签: python svmlight

我正在使用的是此页面:http://svmlight.joachims.org/

Mac OS X(新):http://download.joachims.org/svm_light/current/svm_light_osx.8.4_i7.tar.gz

按照说明安装后,我跳进了他的例子:Inductive SVM(文档在同一页面上)

$ ./svm_learn example1/train.dat example1/model
Scanning examples...done
Reading examples into memory...100..200..300..400..500..600..700..800..900..1000..1100..1200..1300..1400..1500..1600..1700..1800..1900..2000..OK. (2000 examples read)
Setting default regularization parameter C=1.0000
Optimizing........................................................................................................................................................................................................................................................................................................................................................................................................................................done. (425 iterations)
Optimization finished (5 misclassified, maxdiff=0.00085).
Runtime in cpu-seconds: 0.07
Number of SV: 878 (including 117 at upper bound)
L1 loss: loss=35.67674
Norm of weight vector: |w|=19.55576
Norm of longest example vector: |x|=1.00000
Estimated VCdim of classifier: VCdim<=383.42791
Computing XiAlpha-estimates...done
Runtime for XiAlpha-estimates in cpu-seconds: 0.00
XiAlpha-estimate of the error: error<=5.85% (rho=1.00,depth=0)
XiAlpha-estimate of the recall: recall=>95.40% (rho=1.00,depth=0)
XiAlpha-estimate of the precision: precision=>93.07% (rho=1.00,depth=0)
Number of kernel evaluations: 45954
Writing model file...done

$ ./svm_classify example1/test.dat example1/model example1/predictions
Reading model...OK. (878 support vectors read)
Classifying test examples..100..200..300..400..500..600..done
Runtime (without IO) in cpu-seconds: 0.00
Accuracy on test set: 97.67% (586 correct, 14 incorrect, 600 total)
Precision/recall on test set: 96.43%/99.00%

有谁知道这是不是应该是什么? 如果没有,我该如何解决这个问题才能让它运作良好?

仅供参考,我使用OSX 10.9和python 2.7.5。

0 个答案:

没有答案