我正在尝试运行WordCount map / reduce作业的示例代码。我在Hadoop 1.2.1上运行它。我正在从Eclipse运行它。这是我尝试运行的代码:
package mypackage;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCount {
public static class Map extends
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("mapred.job.tracker", "maprfs://,y_address");
conf.set("fs.default.name", "hdfs://my_address");
Job job = new Job(conf, "wordcount");
job.setJarByClass(WordCount.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
不幸的是,运行此代码最终会出现以下错误:
13/11/04 13:27:53 INFO mapred.JobClient:任务ID: attempt_201310311611_0005_m_000000_0,状态:未通过 java.lang.RuntimeException:java.lang.ClassNotFoundException: com.rf.hadoopspikes.WordCount $ Map at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:857) 在 org.apache.hadoop.mapreduce.JobContext.getMapperClass(JobContext.java:199) 在org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:718) 在org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)at org.apache.hadoop.mapred.Child $ 4.run(Child.java:255)at java.security.AccessController.doPrivileged(Native Method)at javax.security.auth.Subject.doAs(Subject.java:415)at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190) 在org.apache.hadoop.mapred.Child.main(Child.java:249)
我知道无法找到WordClass,但我不知道如何使这项工作。 有什么想法吗?
答案 0 :(得分:0)
直接从Eclipse运行时,您需要确保将类捆绑到Jar文件中(hadoop然后复制到HDFS)。您的错误很可能与您的Jar尚未构建的事实有关,或者在运行时,类是从输出目录运行而不是捆绑的jar。
尝试将类导出到jar文件中,然后从该Jar文件中运行WordCount类。您还可以考虑使用我认为可以处理所有这些形式的Eclipse Hadoop插件。最后的选择是捆绑jar然后从命令行启动(如各种Hadoop教程中所述)