数独生成器算法优化欢迎

时间:2013-11-01 02:53:18

标签: java algorithm depth-first-search backtracking sudoku

我创建了一个递归DFS算法来生成/解决Java中的数独板,但它需要永远终止,并且欢迎解释/优化。我无法想象生成数独板会非常耗时,特别是对于所有应用程序(尽管它们可能有数据库)。

基本上,我遍历所有单元格,看看[1-9]中的任何一个是否满足数独约束,并在死端分支上回溯。为了节省内存并避免在每次调用递归方法时复制用作板的2D数组(并且在该树中有可能有81 * 9!叶子,如果我没有弄错......),我创建了一个2D整数堆栈矩阵,每次探索分支时都会推送一个元素,如果它是一个死胡同就会弹出。

以下是实施。任何有关加速的建议都会受到欢迎。我这样做是为了个人练习,我想知道是否存在渐近更好的东西。

希望下面的内容不是很糟糕......谢谢!

1)算法实现:(注意值为[1-9]的“混乱”数组以创建独特的板。)

/**
 * Provides one solution to a board with an initial configuration, or <code>null</code> if there is none.
 * The search is randomized, s.t. the algorithm can serve to populate an empty board. 
 * 
 * @param initial The initial board given to solve.
 * @return The fully solved board, or null if no solution found.
 */
public static int[][] solveBoard (int[][] initial){
    return solveBoard(new StackedBoard(initial), 0, 0);
}

private static int[][] solveBoard (StackedBoard board, int xPos, int yPos){

    // base case - success
    int remaining = 81;
    for (int x = 0; x < 9; x++){
        for (int y = 0; y < 9; y++){
            if (board.peekAt(x, y) != Board.EMPTY){
                remaining--;
            }
        }
    }
    if (remaining == 0){
        return board.flatView();// the only creation of an array.
    }

    // recursive case
    for (int x = 0; x < 9; x++){
        for (int y = 0; y < 9; y++){
            if (board.peekAt(x, y) == Board.EMPTY){
                for (int val : getJumbledRandomVals()){
                    if (isMoveLegal(board, x, y, val)){
                        board.pushAt(x, y, val);
                        int[][] leafBoard = solveBoard(board, x, y);
                        if (leafBoard != null) {
                            return leafBoard;
                        }
                    }
                }
            }
        }
    }

    // base case - dead branch
    board.popAt(xPos, yPos);
    return null;
}

2)StackedBoard实现:

/**
 * Represents square boards with stacked int elements.
 */
class StackedBoard {

    ArrayList<ArrayList<Stack<Integer>>> xaxis = new ArrayList<ArrayList<Stack<Integer>>>();

    /**
     * 
     * @param init A square array - both dimensions of equal length, or <code>null</code> if no initialization.
     */
    public StackedBoard (int[][] init) {
        for (int i = 0; i < 9; i++){
            ArrayList<Stack<Integer>> yaxis = new ArrayList<Stack<Integer>>();
            xaxis.add(yaxis);

            for (int j = 0; j < 9; j++){
                Stack<Integer> stack = new Stack<Integer>();
                yaxis.add(stack);
            }
        }

        if (init != null){
            for (int x = 0; x < init.length; x++){
                for (int y = 0; y < init.length; y++){
                    getStackAt(x, y).push(init[x][y]);
                }
            }   
        }
    }

    public Stack<Integer> getStackAt (int x, int y){
        return xaxis.get(x).get(y);
    }

    public int peekAt (int x, int y){
        return getStackAt(x, y).peek();
    }

    public void pushAt (int x, int y, int value){
        getStackAt(x, y).push(value);
    }

    public Integer popAt (int x, int y){
        try {
            return getStackAt(x, y).pop();  
        } catch (EmptyStackException e){
            // shhhhh!
            return Board.EMPTY;
        }

    }

    /**
     * Flat view of the stacked-board; peek of the top elements.
     */
    public int[][] flatView (){
        int[][] view = new int[xaxis.size()][xaxis.size()];

        for (int x = 0; x < xaxis.size(); x++){
            for (int y = 0; y < xaxis.size(); y++){
                view[x][y] = getStackAt(x, y).peek();
            }
        }

        return view;
    }
}

3)约束函数实现:

/**
 * Is the move legal on the suggested board?
 * 
 * @param board The board.
 * @param x The X coordinate, starts with 0.
 * @param y The Y coordinate, starts with 0.
 * @param value The value.
 * @return <code>true</code> iff the move is legal.
 */
private static boolean isMoveLegal (StackedBoard board, int x, int y, int value){
    // by value
    if (1 > value || value > 9){
        return false;
    }

    // by column
    for (int i = 0; i < 9; i++){
        if (board.peekAt(i, y) == value){
            return false;
        }
    }

    // by row
    for (int i = 0; i < 9; i++){
        if (board.peekAt(x, i) == value){
            return false;
        }
    }

    // by lil square
    int lowerX = x < 3 ? 0 : (x < 6 ? 3 : 6);
    int upperX = lowerX + 2;
    int lowerY = y < 3 ? 0 : (y < 6 ? 3 : 6);
    int upperY = lowerY + 2;

    for (int i = lowerX; i <= upperX; i++){
        for (int j = lowerY; j <= upperY; j++){
            if (board.peekAt(i, j) == value){
                return false;
            }
        }
    }

    return true;
}

1 个答案:

答案 0 :(得分:3)

如果你愿意做一个完整的左转,那么有更好的算法来生成/解决Sudokus。众所周知,Don Knuth的dancing links algorithm非常擅长快速枚举所有Sudoku解决方案(一旦它们被称为exact cover problem的实例)并且通常被用作Sudoku求解器中的主要算法,并且值得调查。它需要大量的指针/参考体操,但编码相对较短。

如果你想坚持你现有的方法,一个有用的优化是总是选择最受约束的单元作为下一个要填充的值。这可能会导致一连串的“强制移动”,这将有助于你减少搜索空间的大小,虽然它只是一种启发式。

希望这有帮助!