这是我的代码,非常简单的东西......
import csv
import json
csvfile = open('file.csv', 'r')
jsonfile = open('file.json', 'w')
fieldnames = ("FirstName","LastName","IDNumber","Message")
reader = csv.DictReader( csvfile, fieldnames)
out = json.dumps( [ row for row in reader ] )
jsonfile.write(out)
声明一些字段名称,读者使用CSV读取文件,并使用字段名称将文件转储为JSON格式。这是问题......
CSV文件中的每条记录都在不同的行上。我希望JSON输出方式相同。问题是它将它全部放在一条巨大的长线上。
我尝试使用类似for line in csvfile:
之类的内容,然后在reader = csv.DictReader( line, fieldnames)
之下运行我的代码,循环遍历每一行,但它在一行上执行整个文件,然后遍历整个文件在另一条线上......继续直到它用完线。
有任何纠正此事的建议吗?
编辑:澄清一下,目前我有:(第1行的每条记录)
[{"FirstName":"John","LastName":"Doe","IDNumber":"123","Message":"None"},{"FirstName":"George","LastName":"Washington","IDNumber":"001","Message":"Something"}]
我正在寻找:( 2行2条记录)
{"FirstName":"John","LastName":"Doe","IDNumber":"123","Message":"None"}
{"FirstName":"George","LastName":"Washington","IDNumber":"001","Message":"Something"}
并非每个单独的字段缩进/在单独的行上,但每条字段都在其自己的行上。
一些示例输入。
"John","Doe","001","Message1"
"George","Washington","002","Message2"
答案 0 :(得分:113)
您想要的输出问题是它不是有效的json文档,;它是一个 json文档流!
没关系,如果你需要它,但这意味着对于输出中你想要的每个文档,你必须打电话给json.dumps
。
由于您想要分隔文档的换行符不包含在这些文档中,因此您可以自行提供。所以我们只需要调用json.dump的循环,并为每个写入的文档设置换行符。
import csv
import json
csvfile = open('file.csv', 'r')
jsonfile = open('file.json', 'w')
fieldnames = ("FirstName","LastName","IDNumber","Message")
reader = csv.DictReader( csvfile, fieldnames)
for row in reader:
json.dump(row, jsonfile)
jsonfile.write('\n')
答案 1 :(得分:10)
您可以使用Pandas DataFrame实现此目的,使用以下示例:
import pandas as pd
csv_file = pd.DataFrame(pd.read_csv("path/to/file.csv", sep = ",", header = 0, index_col = False))
csv_file.to_json("/path/to/new/file.json", orient = "records", date_format = "epoch", double_precision = 10, force_ascii = True, date_unit = "ms", default_handler = None)
答案 2 :(得分:8)
我采用了@ SingleNegationElimination的响应并将其简化为可以在管道中使用的三线程:
import csv
import json
import sys
for row in csv.DictReader(sys.stdin):
json.dump(row, sys.stdout)
sys.stdout.write('\n')
答案 3 :(得分:6)
您可以尝试this
import csvmapper
# how does the object look
mapper = csvmapper.DictMapper([
[
{ 'name' : 'FirstName'},
{ 'name' : 'LastName' },
{ 'name' : 'IDNumber', 'type':'int' },
{ 'name' : 'Messages' }
]
])
# parser instance
parser = csvmapper.CSVParser('sample.csv', mapper)
# conversion service
converter = csvmapper.JSONConverter(parser)
print converter.doConvert(pretty=True)
编辑:
更简单的方法
import csvmapper
fields = ('FirstName', 'LastName', 'IDNumber', 'Messages')
parser = CSVParser('sample.csv', csvmapper.FieldMapper(fields))
converter = csvmapper.JSONConverter(parser)
print converter.doConvert(pretty=True)
答案 4 :(得分:2)
将indent
参数添加到json.dumps
data = {'this': ['has', 'some', 'things'],
'in': {'it': 'with', 'some': 'more'}}
print(json.dumps(data, indent=4))
另请注意,您只需将json.dump
与开放jsonfile
:
json.dump(data, jsonfile)
答案 5 :(得分:2)
import csv
import json
file = 'csv_file_name.csv'
json_file = 'output_file_name.json'
#Read CSV File
def read_CSV(file, json_file):
csv_rows = []
with open(file) as csvfile:
reader = csv.DictReader(csvfile)
field = reader.fieldnames
for row in reader:
csv_rows.extend([{field[i]:row[field[i]] for i in range(len(field))}])
convert_write_json(csv_rows, json_file)
#Convert csv data into json
def convert_write_json(data, json_file):
with open(json_file, "w") as f:
f.write(json.dumps(data, sort_keys=False, indent=4, separators=(',', ': '))) #for pretty
f.write(json.dumps(data))
read_CSV(file,json_file)
答案 6 :(得分:1)
如何使用Pandas将csv文件读入DataFrame(pd.read_csv),然后根据需要操作列(删除它们或更新值),最后将DataFrame转换回JSON({{3} })。
注意:我没有检查过它的效率,但这绝对是操纵大型csv并将其转换为json的最简单方法之一。
答案 7 :(得分:1)
我看到这是旧的,但我需要SingleNegationElimination的代码,但是我遇到了包含非utf-8字符的数据的问题。这些出现在我并不过分关注的领域,所以我选择忽略它们。然而,这需要一些努力。我是python的新手,所以经过一些试验和错误,我得到了它的工作。该代码是SingleNegationElimination的副本,具有utf-8的额外处理。我尝试用https://docs.python.org/2.7/library/csv.html来做,但最终放弃了。以下代码有效。
import csv, json
csvfile = open('file.csv', 'r')
jsonfile = open('file.json', 'w')
fieldnames = ("Scope","Comment","OOS Code","In RMF","Code","Status","Name","Sub Code","CAT","LOB","Description","Owner","Manager","Platform Owner")
reader = csv.DictReader(csvfile , fieldnames)
code = ''
for row in reader:
try:
print('+' + row['Code'])
for key in row:
row[key] = row[key].decode('utf-8', 'ignore').encode('utf-8')
json.dump(row, jsonfile)
jsonfile.write('\n')
except:
print('-' + row['Code'])
raise
答案 8 :(得分:0)
对@MONTYHS的回答略有改进,迭代一串字段名:
import csv
import json
csvfilename = 'filename.csv'
jsonfilename = csvfilename.split('.')[0] + '.json'
csvfile = open(csvfilename, 'r')
jsonfile = open(jsonfilename, 'w')
reader = csv.DictReader(csvfile)
fieldnames = ('FirstName', 'LastName', 'IDNumber', 'Message')
output = []
for each in reader:
row = {}
for field in fieldnames:
row[field] = each[field]
output.append(row)
json.dump(output, jsonfile, indent=2, sort_keys=True)
答案 9 :(得分:0)
def read():
noOfElem = 200 # no of data you want to import
csv_file_name = "hashtag_donaldtrump.csv" # csv file name
json_file_name = "hashtag_donaldtrump.json" # json file name
with open(csv_file_name, mode='r') as csv_file:
csv_reader = csv.DictReader(csv_file)
with open(json_file_name, 'w') as json_file:
i = 0
json_file.write("[")
for row in csv_reader:
i = i + 1
if i == noOfElem:
json_file.write("]")
return
json_file.write(json.dumps(row))
if i != noOfElem - 1:
json_file.write(",")
改变上面三个参数,一切就搞定了。
答案 10 :(得分:0)
使用 Pandas 和 json 库:
import pandas as pd
import json
filepath = "inputfile.csv"
output_path = "outputfile.json"
df = pd.read_csv(filepath)
# Create a multiline json
json_list = json.loads(df.to_json(orient = "records"))
with open(output_path, 'w') as f:
for item in json_list:
f.write("%s\n" % item)
答案 11 :(得分:-1)
import csv
import json
csvfile = csv.DictReader('filename.csv', 'r'))
output =[]
for each in csvfile:
row ={}
row['FirstName'] = each['FirstName']
row['LastName'] = each['LastName']
row['IDNumber'] = each ['IDNumber']
row['Message'] = each['Message']
output.append(row)
json.dump(output,open('filename.json','w'),indent=4,sort_keys=False)