日期时间列表的平均时间

时间:2013-10-30 12:02:43

标签: python datetime pandas average

寻找时间平均问题的最快解决方案。

我有一个日期时间对象列表。需要找到时间的平均值(不包括年,月,日)。 这是我到目前为止所得到的:

import datetime as dtm
def avg_time(times):
    avg = 0
    for elem in times:
        avg += elem.second + 60*elem.minute + 3600*elem.hour
    avg /= len(times)
    rez = str(avg/3600) + ' ' + str((avg%3600)/60) + ' ' + str(avg%60)
    return dtm.datetime.strptime(rez, "%H %M %S")

5 个答案:

答案 0 :(得分:5)

这是解决此问题的更好方法

生成日期时间样本

In [28]: i = date_range('20130101',periods=20000000,freq='s')

In [29]: i
Out[29]: 
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00, ..., 2013-08-20 11:33:19]
Length: 20000000, Freq: S, Timezone: None

平均20m次

In [30]: %timeit pd.to_timedelta(int((i.hour*3600+i.minute*60+i.second).mean()),unit='s')
1 loops, best of 3: 2.87 s per loop

作为timedelta的结果(请注意,这需要numpy 1.7和pandas 0.13用于to_timedelta部分,很快就会出现)

In [31]: pd.to_timedelta(int((i.hour*3600+i.minute*60+i.second).mean()),unit='s')
Out[31]: 
0   11:59:12
dtype: timedelta64[ns]

以秒为单位(这适用于pandas 0.12,numpy&gt; = 1.6)。

In [32]: int((i.hour*3600+i.minute*60+i.second).mean())
Out[32]: 43152

答案 1 :(得分:1)

我一直在寻找相同的东西,但后来我发现了这一点。 获取日期时间对象列表平均值的一种非常简单的方法。

    import datetime
    #from datetime.datetime import timestamp,fromtimestamp,strftime ----> You can use this as well to remove unnecessary datetime.datetime prefix :)  
    def easyAverage(datetimeList): ----> Func Declaration
        sumOfTime=sum(map(datetime.datetime.timestamp,datetimeList))
        '''
         timestamp function changes the datetime object to a unix timestamp sort of a format.
         So I have used here a map to just change all the datetime object into a unix time stamp form , added them using sum and store them into sum variable.
        '''
        length=len(datetimeList) #----> Self Explanatory

        averageTimeInTimeStampFormat=datetime.datetime.fromtimestamp(sumOfTime/length)
        '''
        fromtimestamp function returns a datetime object from a unix timestamp.
        '''

        timeInHumanReadableForm=datetime.datetime.strftime(averageTimeInTimeStampFormat,"%H:%M:%S") #----> strftime to change the datetime object to string.
        return timeInHumanReadableForm

或者你可以用一个简单的行来完成所有这些:

    avgTime=datetime.datetime.strftime(datetime.datetime.fromtimestamp(sum(map(datetime.datetime.timestamp,datetimeList))/len(datetimeList)),"%H:%M:%S")

干杯,

答案 2 :(得分:1)

这不是最好的解决方案,但可能会有所帮助:

import datetime as dt

t1 = dt.datetime(2020,12,31,10,00,5)
t2 = dt.datetime(2021,1,1,17,20,15)

delta = t2-t1 #delta is a datetime.timedelta object and can be used in the + operation

avg = t1 + delta/2 #average of t1 and t2

答案 3 :(得分:0)

您至少会使用带有生成器表达式的sum()来创建总秒数:

from datetime import datetime, date, time

def avg_time(datetimes):
    total = sum(dt.hour * 3600 + dt.minute * 60 + dt.second for dt in datetimes)
    avg = total / len(datetimes)
    minutes, seconds = divmod(int(avg), 60)
    hours, minutes = divmod(minutes, 60)
    return datetime.combine(date(1900, 1, 1), time(hours, minutes, seconds))

演示:

>>> from datetime import datetime, date, time, timedelta
>>> def avg_time(datetimes):
...     total = sum(dt.hour * 3600 + dt.minute * 60 + dt.second for dt in datetimes)
...     avg = total / len(datetimes)
...     minutes, seconds = divmod(int(avg), 60)
...     hours, minutes = divmod(minutes, 60)
...     return datetime.combine(date(1900, 1, 1), time(hours, minutes, seconds))
... 
>>> avg_time([datetime.now(), datetime.now() - timedelta(hours=12)])
datetime.datetime(1900, 1, 1, 7, 13)

答案 4 :(得分:0)

这是一个简短而甜蜜的解决方案(虽然可能不是最快的解决方案)。它采用日期列表中每个日期与某个任意参考日期之间的差异(返回datetime.timedelta),然后将这些差异求和并求平均值。然后将其添加回原始参考日期。

import datetime
def avg(dates):
  any_reference_date = datetime.datetime(1900, 1, 1)
  return any_reference_date + sum([date - any_reference_date for date in dates], datetime.timedelta()) / len(dates)