我有一个看起来像这样的数组:
k = numpy.array([(1.,0.001), (1.1, 0.002), (None, None),
(1.2, 0.003), (0.99, 0.004)])
我想绘制不是(None, None)
的值并保留数组值的索引。也就是说,只要有(None, None)
值,我就想要一个间隙。
完成后我想绘制
y = k[:,0] + k[:,1]
但我甚至无法将数组添加到一起。我尝试屏蔽数组,但是我丢失了原始k
数组的索引值。
一个最小的例子:
import matplotlib.pyplot as pyplot
import numpy
x = range(5)
k = numpy.array([(1.,0.001), (1.1, 0.002), (None, None),
(1.2, 0.003), (0.99, 0.004)])
Fig, ax = pyplot.subplots()
# This plots a gap---as desired
ax.plot(x, k[:,0], 'k-')
# I'd like to plot
# k[:,0] + k[:,1]
# but I can't add None
# Here I get rid of the (None, None) values so I can add
# But I lose the original indexing
mask = k != (None, None)
y = k[mask].reshape((-1,2))
ax.plot(range(len(y)), y[:,0]+y[:,1], 'k--')
答案 0 :(得分:5)
您可以使用numpy.nan而不是None。
import matplotlib.pyplot as pyplot
import numpy
x = range(5)
k = numpy.array([(1.,0.001), (1.1, 0.002), (numpy.nan, numpy.nan),
(1.2, 0.003), (0.99, 0.004)])
Fig, ax = pyplot.subplots()
# This plots a gap---as desired
ax.plot(x, k[:,0], 'k-')
ax.plot(range(len(y)), y[:,0]+y[:,1], 'k--')
或者您也可以屏蔽x值,因此x和y之间的索引是一致的
import matplotlib.pyplot as pyplot
import numpy
x = range(5)
y = numpy.array([(1.,0.001), (1.1, 0.002), (numpy.nan, numpy.nan),
(1.2, 0.003), (0.99, 0.004)])
Fig, ax = pyplot.subplots()
ax.plot(range(len(y)), y[:,0]+y[:,1], 'k--')
import matplotlib.pyplot as pyplot
import numpy
x = range(5)
k = numpy.array([(1.,0.001), (1.1, 0.002), (None, None),
(1.2, 0.003), (0.99, 0.004)])
Fig, ax = pyplot.subplots()
# This plots a gap---as desired
ax.plot(x, k[:,0], 'k-')
# I'd like to plot
# k[:,0] + k[:,1]
# but I can't add None
arr_none = np.array([None])
mask = (k[:,0] == arr_none) | (k[:,1] == arr_none)
ax.plot(numpy.arange(len(y))[mask], k[mask,0]+k[mask,1], 'k--')
答案 1 :(得分:1)
您可以过滤阵列:
test = np.array([None])
k = k[k!=test].reshape(-1, 2).astype(float)
然后总结列并制作情节。您的方法的问题是您没有将None
类型转换为numpy数组,这不允许正确创建掩码。