所以这是涉及硬币的两部分问题。第一部分涉及总计1-99美分的硬币数量(例如,它需要1个硬币才能达到1美分,2个硬币要达到2美分等等,并添加所需的硬币总额。每个值)。这可以通过以下代码表示(随意提出建议/改进):
def findbest(origarray, denom):
current = origarray
i = 1
while(i < size):
if(i in denom):
current[i] = 1
coinlist[i] = [i]
else:
k = 1
while(k < 1 + (i/2)):
c = current[k] + current[i-k]
if(c < current[i]):
current[i] = c
coinlist[i] = coinlist[k] + coinlist[i-k]
k+=1
print i, current[i], coinlist[i]
i+=1
return current
size = 100
coinlist = [[]]
origarray = [0]
i = 1
while(i < size):
origarray.append(100)
coinlist.append([])
i += 1
denom = [1,5,10,25,50]
x = findbest(origarray, denom)
total=0
for value in findbest(origarray,denom):
total += value
print total
print "\n\n\n"
print x
问题的第二部分是找到理想的三种面额(不必是真正的面额,但必须是1),这将产生所有硬币计数的最低总和。 这对我来说很棘手。我知道我必须写一些会强制命名值的东西,直到它找到最佳值(我知道[1,12,19],我只是无法达到那一点),但我不是确定如何去做。有没有人知道如何做到这一点?
答案 0 :(得分:1)
你正在寻找的功能,这将使这完全无关紧要itertools.combinations
。
>>> from itertools import combinations
>>> len(list(a for a in combinations(range(1, 101), 3)))
161700
我建议你的实现基于你的实现:
def findbest(origarray, denom):
current = origarray
i = 1
while(i < size):
if(i in denom):
current[i] = 1
coinlist[i] = [i]
else:
k = 1
while(k < 1 + (i/2)):
c = current[k] + current[i-k]
if(c < current[i]):
current[i] = c
coinlist[i] = coinlist[k] + coinlist[i-k]
k+=1
#print i, current[i], coinlist[i]
i+=1
return current
size = 100
def reset_cache():
i = 1
global coinlist
coinlist = [[]]
global origarray
origarray = [0]
while(i < size):
origarray.append(100)
coinlist.append([])
i += 1
reset_cache()
denom = [1,5,10,25,50]
x = findbest(origarray, denom)
total=0
for value in findbest(origarray,denom):
total += value
print total
print "\n\n\n"
print x
from itertools import combinations
best = ((0,0,0), 1e6)
for comb in combinations(range(1, 101), 3):
#print "Considering: %s" % comb
reset_cache()
total = 0
for value in findbest(origarray, comb):
total += value
if total < best[1]:
print "%s beat best with %d" % (comb, total)
best = (comb, total)
print best
但是我不知道需要什么我认为是硬币缓存?我不确定,我没有太难读你的代码。但我不喜欢传递几个数组来使其工作的必要性。它应该是独立的。
编辑:在我看来,你实际上可以逃脱for comb in [(1,) + a for a in combinations(range(2, 101), 2)]:
因为任何有效的变更系统都需要1美分硬币。这使代码运行得更快,因为
>>> len([(1,) + a for a in combinations(range(2, 101), 2)])
4851
答案 1 :(得分:1)
我的java版
public static int minChange(int[] coins, int total) {
int[] counts = new int[total + 1];
counts[0] = 0;
int MAX = Integer.MAX_VALUE - 1;
for (int i = 1; i <= total; ++i) {
int count = MAX;
for (int j = 0; j < coins.length; ++j) {
if (i - coins[j] >= 0 && count > counts[i - coins[j]])
count = counts[i - coins[j]];
}
if (count < MAX)
counts[i] = count + 1;
else
counts[i] = MAX;
}
return counts[total];
}