我正试图在R中执行回归分析。下面是我在R中生成的一些随机虚拟数据,在R中运行逻辑glm。我已将数据保存到测试文件中,读取使用ipython进入python(ipython notebook非常棒,只是刚开始使用它!),然后尝试使用python运行相同的分析。 结果非常相似,但它们是不同的。我有点希望它们是一样的。我做错了什么,是否有我缺少的参数,或者由于某些基础计算而产生的差异?
任何帮助表示赞赏!
编辑:我不知道这是否值得关闭,但我用Ben的编辑(和更清洁)代码重新编写代码,python和R之间的结果现在是相同的。我根本没有更改python代码,以及我以前的R代码和Ben的代码,而不同的应该是(据我所知)做同样的事情。无论问题的重点是现在都没有实际意义。尽管如此,谢谢你看看。
生成随机数据并运行glm:
set.seed(666)
dat <- data.frame(a=rnorm(500), b=runif(500),
c=as.factor(sample(1:5, 500, replace=TRUE)))
library(plyr)
dat <- mutate(dat,
y0=((jitter(a)^2+(-log10(b)))/(as.numeric(c)/10))+rnorm(500),
y=(y0>=mean(y0)))
fit1 <- glm(y~a+b+c,data=dat,family=binomial('logit'))
summary(fit1)
Call:
glm(formula = y ~ a + b + c, family = binomial("logit"), data = dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.5369 -0.8154 -0.5479 0.9314 2.3831
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2363 0.3007 4.111 3.94e-05 ***
a -0.2051 0.1062 -1.931 0.0535 .
b -1.6103 0.3834 -4.200 2.67e-05 ***
c2 -0.5114 0.3091 -1.654 0.0980 .
c3 -1.3169 0.3147 -4.184 2.86e-05 ***
c4 -2.0017 0.3342 -5.990 2.09e-09 ***
c5 -2.5084 0.3772 -6.651 2.92e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 631.31 on 499 degrees of freedom
Residual deviance: 537.84 on 493 degrees of freedom
AIC: 551.84
Number of Fisher Scoring iterations: 4
输出用于python的相同数据:
write.table(dat, file='test.txt', row.names=F, col.names=T, quote=F, sep=',' )
现在是python代码:
import pandas as pd
import statsmodels.api as sm
import pylab as pl
import numpy as np
data = pd.read_csv('test.txt')
data.describe()
dummy_c = pd.get_dummies(data['c'], prefix='c')
data = data[['y','a','b']].join(dummy_c.ix[:,'c_2':])
data_depend = data['y']
data_independ = data.iloc[:,1:]
data_independ = sm.add_constant(data_independ, prepend=False)
glm_binom = sm.GLM(data_depend, data_independ, family=sm.families.Binomial())
res = glm_binom.fit()
print res.summary()
产生:
Generalized Linear Model Regression Results
==============================================================================
Dep. Variable: y No. Observations: 500
Model: GLM Df Residuals: 493
Model Family: Binomial Df Model: 6
Link Function: logit Scale: 1.0
Method: IRLS Log-Likelihood: -268.92
Date: Sun, 27 Oct 2013 Deviance: 537.84
Time: 01:26:47 Pearson chi2: 514.
No. Iterations: 6
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
a -0.2051 0.106 -1.931 0.054 -0.413 0.003
b -1.6103 0.383 -4.200 0.000 -2.362 -0.859
c_2 -0.5114 0.309 -1.654 0.098 -1.117 0.094
c_3 -1.3169 0.315 -4.184 0.000 -1.934 -0.700
c_4 -2.0017 0.334 -5.990 0.000 -2.657 -1.347
c_5 -2.5084 0.377 -6.651 0.000 -3.248 -1.769
const 1.2363 0.301 4.111 0.000 0.647 1.826
==============================================================================
答案 0 :(得分:1)
一点代码清理:
set.seed(101)
dat <- data.frame(a=rnorm(500), b=runif(500),
c=as.factor(sample(1:5, 500, replace=TRUE)))
library(plyr)
dat <- mutate(dat,
y0=((jitter(a)^2+(-log10(b)))/(as.numeric(c)/10))+rnorm(500),
y=(y0>=mean(y0)))
fit1 <- glm(y~a+b+c,data=dat,family=binomial('logit'))
fit2 <- update(fit1,control=glm.control(maxit=6))
all.equal(fit1,fit2)
coef(fit1)
## (Intercept) a b c2 c3 c4
## 1.22283193 -0.07544488 -1.54732712 -0.36477556 -1.46313143 -1.95008291
## c5
## -3.11914945
我同意@Roland的评论,一个可重复的例子会有所帮助。最可能的区别在于对比编码,例如:
fit3 <- update(fit1,contrasts=list(c=contr.sum))
coef(fit3)
##
## (Intercept) a b c1 c2 c3
## -0.15659594 -0.07544488 -1.54732712 1.37942787 1.01465231 -0.08370356
## c4
## -0.57065503
如果您使用仅包含连续预测变量的模型,结果是否更好匹配?
更新:对比编码不可能是整个故事,因为偏差/对数似然以及系数不同。