假设array_1
和array_2
是两个大小相同的矩阵数组。有没有任何向量化的方法来乘元素,这两个数组的元素(它们的元素的乘法定义得很好)?
虚拟代码:
def mat_multiply(array_1,array_2):
size=np.shape(array_1)[0]
result=np.array([])
for i in range(size):
result=np.append(result,np.dot(array_1[i],array_2[i]),axis=0)
return np.reshape(result,(size,2))
示例输入:
a=[[[1,2],[3,4]],[[1,2],[3,4]]]
b=[[1,3],[4,5]]
输出:
[[ 7. 15.]
[ 14. 32.]]
答案 0 :(得分:4)
与您的第一句相反,a
和b
的大小不同。但是让我们关注你的例子。
所以你想要这个--2点产品,每一行a
和b
np.array([np.dot(x,y) for x,y in zip(a,b)])
或避免追加
X = np.zeros((2,2))
for i in range(2):
X[i,...] = np.dot(a[i],b[i])
dot
产品可以用einsum
(矩阵索引表示法)表示为
[np.einsum('ij,j->i',x,y) for x,y in zip(a,b)]
所以下一步是索引第一个维度:
np.einsum('kij,kj->ki',a,b)
我对einsum
非常熟悉,但是仍需要一些试验和错误来弄清楚你想要什么。既然问题很清楚,我可以用其他几种方式来计算它
A, B = np.array(a), np.array(b)
np.multiply(A,B[:,np.newaxis,:]).sum(axis=2)
(A*B[:,None,:]).sum(2)
np.dot(A,B.T)[0,...]
np.tensordot(b,a,(-1,-1))[:,0,:]
我发现使用不同大小的数组很有帮助。例如,如果A
为(2,3,4)
和B
(2,4)
,则点数总和必须位于最后一维上。
另一个numpy迭代工具是np.nditer
。 einsum
使用此(在C中)。
http://docs.scipy.org/doc/numpy/reference/arrays.nditer.html
it = np.nditer([A, B, None],flags=['external_loop'],
op_axes=[[0,1,2], [0,-1,1], None])
for x,y,w in it:
# x, y are shape (2,)
w[...] = np.dot(x,y)
it.operands[2][...,0]
避免[...,0]
步骤,需要更精细的设置。
C = np.zeros((2,2))
it = np.nditer([A, B, C],flags=['external_loop','reduce_ok'],
op_axes=[[0,1,2], [0,-1,1], [0,1,-1]],
op_flags=[['readonly'],['readonly'],['readwrite']])
for x,y,w in it:
w[...] = np.dot(x,y)
# w[...] += x*y
print C
# array([[ 7., 15.],[ 14., 32.]])
答案 1 :(得分:2)
还有一个选项,@ hpaulj在他广泛而全面的选项列表中遗漏了这些选项:
>>> a = np.array(a)
>>> b = np.array(b)
>>> from numpy.core.umath_tests import matrix_multiply
>>> matrix_multiply.signature
'(m,n),(n,p)->(m,p)'
>>> matrix_multiply(a, b[..., np.newaxis])
array([[[ 7],
[15]],
[[14],
[32]]])
>>> matrix_multiply(a, b[..., np.newaxis]).shape
(2L, 2L, 1L)
>>> np.squeeze(matrix_multiply(a, b[..., np.newaxis]), axis=-1)
array([[ 7, 15],
[14, 32]])
关于matrix_multiply
的好处是,它是一个gufunc,它不仅适用于一维矩阵数组,还适用于可广播数组。例如,如果不是将第一个矩阵与第一个向量相乘,而是将第二个矩阵与第二个向量相乘,而是想要计算所有可能的乘法,您可以这样做:
>>> a = np.arange(8).reshape(2, 2, 2) # to have different matrices
>>> np.squeeze(matrix_multiply(a[...,np.newaxis, :, :],
... b[..., np.newaxis]), axis=-1)
array([[[ 3, 11],
[ 5, 23]],
[[19, 27],
[41, 59]]])