在Python中使用reshape重塑数组

时间:2013-10-20 20:32:27

标签: python numpy shape reshape

我有一个如下所示的数组:

array([[0, 0, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 2, 2],
       [3, 3, 3, 3, 3, 3, 3, 3],
       [4, 4, 4, 4, 4, 4, 4, 4],
       [5, 5, 5, 5, 5, 5, 5, 5],
       [6, 6, 6, 6, 6, 6, 6, 6],
       [7, 7, 7, 7, 7, 7, 7, 7]])

如何使用重塑将其分成4个卡盘,使其看起来像

array([[[0, 0, 0, 0],  
       [1, 1, 1, 1],  
       [2, 2, 2, 2],  
       [3, 3, 3, 3]],  
       [[0, 0, 0, 0],  
       [1, 1, 1, 1],  
       [2, 2, 2, 2],  
       [3, 3, 3, 3]], 
       [[4, 4, 4, 4],
       [5, 5, 5, 5],
       [6, 6, 6, 6],
       [7, 7, 7, 7]],
       [[4, 4, 4, 4],
       [5, 5, 5, 5],
       [6, 6, 6, 6],
       [7, 7, 7, 7]]])

我在重塑(m,n,l)中尝试了m,n,l的不同整数组合,但都没有效果。

2 个答案:

答案 0 :(得分:8)

编辑:对不起,我没有意识到这是一个三维结果,而不是四维结果。要获得3-d,你必须再次重塑。额外的重塑复制数据。

你不能,你也需要转换:

In [1]: a = np.arange(8)[:,None].repeat(8,axis=1)

In [2]: a
Out[2]: 
array([[0, 0, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 2, 2],
       [3, 3, 3, 3, 3, 3, 3, 3],
       [4, 4, 4, 4, 4, 4, 4, 4],
       [5, 5, 5, 5, 5, 5, 5, 5],
       [6, 6, 6, 6, 6, 6, 6, 6],
       [7, 7, 7, 7, 7, 7, 7, 7]])

In [3]: b = a.reshape(2,4,2,4)

In [4]: b
Out[4]: 
array([[[[0, 0, 0, 0],
         [0, 0, 0, 0]],
         ...
        [[7, 7, 7, 7],
         [7, 7, 7, 7]]]])

In [5]: b.transpose(0,2,1,3)
Out[5]: 
array([[[[0, 0, 0, 0],
         [1, 1, 1, 1],
         [2, 2, 2, 2],
         [3, 3, 3, 3]],

        [[0, 0, 0, 0],
         [1, 1, 1, 1],
         [2, 2, 2, 2],
         [3, 3, 3, 3]]],


       [[[4, 4, 4, 4],
         [5, 5, 5, 5],
         [6, 6, 6, 6],
         [7, 7, 7, 7]],

        [[4, 4, 4, 4],
         [5, 5, 5, 5],
         [6, 6, 6, 6],
         [7, 7, 7, 7]]]])

答案 1 :(得分:5)

在所有numpy数组(实际上,所有数组(不是链接列表))下面都是线性的内存块,你的解释就会有更高的维度性质。考虑它的方法是元素[i, j]在底层数组中是真正的元素[i * num_cols + j]

Numpy会为您提供所有大步细节,让您可以使用您想要的任何维度轻松索引到内存中,但是您有一个约束,即您只能将数据重新整形为可以编写规则的数组像上面的转换(i,j) - >单个索引,你想要的不是。

你可以通过多种方式 做你想做的事,但它们都涉及复制数据

In [6]: array([[0, 0, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 2, 2],
       [3, 3, 3, 3, 3, 3, 3, 3],
       [4, 4, 4, 4, 4, 4, 4, 4],
       [5, 5, 5, 5, 5, 5, 5, 5],
       [6, 6, 6, 6, 6, 6, 6, 6],
       [7, 7, 7, 7, 7, 7, 7, 7]]).reshape(-1, 4)[np.r_[range(0, 8, 2), range(1, 8, 2), range(8, 16, 2), range(9, 16, 2)]].reshape(4, 4, 4)
Out[6]: 
array([[0, 0, 0, 0],
       [1, 1, 1, 1],
       [2, 2, 2, 2],
       [3, 3, 3, 3],
       [0, 0, 0, 0],
       [1, 1, 1, 1],
       [2, 2, 2, 2],
       [3, 3, 3, 3],
       [4, 4, 4, 4],
       [5, 5, 5, 5],
       [6, 6, 6, 6],
       [7, 7, 7, 7],
       [4, 4, 4, 4],
       [5, 5, 5, 5],
       [6, 6, 6, 6],
       [7, 7, 7, 7]])

或假设您的数组位于a

In [10]: np.vstack([a[:4, :4], a[:4, 4:], a[4:, :4], a[4:, 4:]])
Out[10]: 
array([[0, 0, 0, 0],
       [1, 1, 1, 1],
       [2, 2, 2, 2],
       [3, 3, 3, 3],
       [0, 0, 0, 0],
       [1, 1, 1, 1],
       [2, 2, 2, 2],
       [3, 3, 3, 3],
       [4, 4, 4, 4],
       [5, 5, 5, 5],
       [6, 6, 6, 6],
       [7, 7, 7, 7],
       [4, 4, 4, 4],
       [5, 5, 5, 5],
       [6, 6, 6, 6],
       [7, 7, 7, 7]]).reshape(4, 4, 4)

或只是

np.array([a[:4, :4], a[:4, 4:], a[4:, :4], a[4:, 4:]])