我有一个经常遇到的问题,我需要一种更有效的处理方式。我有一个凌乱的解决方案,发布在下面。
首先,我将生成一些与我的数据集类似的示例数据。
a <- c(1, 2, 2, 2, 3, 3)
b <- c("10/12", "10/12", "10/12", "10/13", "10/12", "10/12")
c <- c("c", "c", "pv", "c", "c", "c")
data <- matrix(NA, nrow = 6, ncol = 3)
data[,1] <- a
data[,2] <- b
data[,3] <- c
data
[,1] [,2] [,3]
[1,] 1 10/12 c
[2,] 2 10/12 c
[3,] 2 10/12 pv
[4,] 2 10/13 c
[5,] 3 10/12 c
[6,] 3 10/12 c
# [,1] is a unique identifier, [,2] is a date, and [,3] is a type of occurrance
我需要做的是生成一个表,每天只为每个ID包含一个条目 列中显示该条目是仅对应'c','pv'仅对应'c&amp; pv',或'多个c'。 数据中无法使用多个pv
我这样做的方法是使用嵌套的for循环:
# I generate an object to post the data to
output.temp <- matrix(NA, nrow = 1, ncol = 4)
# Then I define the outer loop that subsets the data over each ID
ids <- unique(data[,1])
n.ids <- length(ids)
for(i in 1:n.ids){
temp.data <- subset(data, data[,1] == ids[i])
dates <- unique(temp.data[,2])
n.dates <- length(dates)
# Then I define the inner loop that subsets the data for each ID over each date
for(j in 1: n.dates){
date.data <- subset(temp.data, temp.data[,2] == dates[j])
# Then I apply the logic of what to write out
if(nrow(date.data) == 1){
if(date.data[,3] == 'c'){
new.row <- cbind(date.data, "c only")
output.temp <- rbind(output.temp, new.row)
}
if(date.data[,3] == 'pv'){
new.row <- cbind(date.data, "pv only")
output.temp <- rbind(output.temp, new.row)
}
}
if(nrow(date.data) > 1){
if('pv' %in% date.data[,3]){
new.row <- cbind(matrix(date.data[1,], nrow = 1), c("c & pv"))
output.temp <- rbind(output.temp, new.row)
}
else{
new.row <- cbind(matrix(date.data[1,], nrow = 1), " multiple c only")
output.temp <- rbind(output.temp, new.row)
}
}
}
}
# Finally, I drop the unnecessary row and column from the output object
output.final <- output.temp[-1,-3]
这很有效,但效率非常低。随着我的数据集变得越来越大(接近100万行), 它变得越来越成问题。
由于我是 R 的新手并且对编程经验不足,因此我们非常感谢您对替代策略的任何建议。
答案 0 :(得分:1)
您应该能够使用下面的代码来获得所需输出的确切格式。
dataset <- data.table(dataset)
setnames(dataset, c('id','day','occurrence'))
dataset[,list(noofc = table(occurrence)['c'], noofpv = table(occurrence)['pv']), by = c('id','day')]
data.table
是非常有效的数据框,也应该有助于解决数据大小问题
答案 1 :(得分:0)
我认为这个ddply()
解决方案适合您:
library(plyr)
data <- data.frame(data)
names(data) <- c("id","date","type")
get.type <- function(x) ifelse("c" %in% x & "pv" %in% x, "c & pv",
ifelse(sum("c" == x) > 1,"multiple c",
ifelse("c" %in% x,"c",
ifelse("pv" %in% x,"pv","other"))))
ddply(data,.(id,date),summarize,type=get.type(type))
id date type
1 1 10/12 c
2 2 10/12 c & pv
3 2 10/13 c
4 3 10/12 multiple c