我一直在努力解决以下问题:
您将获得N个计数器,最初设置为0,您可以对它们进行两种操作:
increase(X) − counter X is increased by 1,
max_counter − all counters are set to the maximum value of any counter.
给出了M个整数的非空零索引数组A.此数组表示连续操作:
if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
if A[K] = N + 1 then operation K is max_counter.
例如,给定整数N = 5且数组A使得:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
每次连续操作后计数器的值为:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
目标是在所有操作之后计算每个计数器的值。
struct Results {
int * C;
int L;
};
写一个函数:
struct Results solution(int N, int A[], int M);
给定一个整数N和一个由M个整数组成的非空零索引数组A,返回一个表示计数器值的整数序列。
序列应返回为:
a structure Results (in C), or
a vector of integers (in C++), or
a record Results (in Pascal), or
an array of integers (in any other programming language).
例如,给定:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
该函数应返回[3,2,2,4,2],如上所述。
假设:
N and M are integers within the range [1..100,000];
each element of array A is an integer within the range [1..N + 1].
复杂度:
expected worst-case time complexity is O(N+M);
expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
可以修改输入数组的元素。
以下是我的解决方案:
import java.util.Arrays;
class Solution {
public int[] solution(int N, int[] A) {
final int condition = N + 1;
int currentMax = 0;
int countersArray[] = new int[N];
for (int iii = 0; iii < A.length; iii++) {
int currentValue = A[iii];
if (currentValue == condition) {
Arrays.fill(countersArray, currentMax);
} else {
int position = currentValue - 1;
int localValue = countersArray[position] + 1;
countersArray[position] = localValue;
if (localValue > currentMax) {
currentMax = localValue;
}
}
}
return countersArray;
}
}
以下是代码评估: https://codility.com/demo/results/demo6AKE5C-EJQ/
你能否告诉我这个解决方案有什么问题?
答案 0 :(得分:29)
问题来自于这段代码:
for (int iii = 0; iii < A.length; iii++) {
...
if (currentValue == condition) {
Arrays.fill(countersArray, currentMax);
}
...
}
想象一下,使用值A
初始化数组N+1
的每个元素。由于函数调用Arrays.fill(countersArray, currentMax)
的时间复杂度为O(N)
,因此整体算法的时间复杂度为O(M * N)
。我认为,解决此问题的一种方法是,在调用A
操作时,可以将上次更新的值保留为变量,而不是显式更新整个数组max_counter
。调用第一个操作(增量)时,您只需查看尝试增加的值是否大于last_update
。如果是,您只需将值更新为1,否则将其初始化为last_update + 1
。调用第二个操作后,您只需将last_update
更新为current_max
即可。最后,当您完成并尝试返回最终值时,再次将每个值与last_update
进行比较。如果它更大,你只需保留该值,否则返回last_update
class Solution {
public int[] solution(int N, int[] A) {
final int condition = N + 1;
int currentMax = 0;
int lastUpdate = 0;
int countersArray[] = new int[N];
for (int iii = 0; iii < A.length; iii++) {
int currentValue = A[iii];
if (currentValue == condition) {
lastUpdate = currentMax
} else {
int position = currentValue - 1;
if (countersArray[position] < lastUpdate)
countersArray[position] = lastUpdate + 1;
else
countersArray[position]++;
if (countersArray[position] > currentMax) {
currentMax = countersArray[position];
}
}
}
for (int iii = 0; iii < N; iii++)
if (countersArray[iii] < lastUpdate)
countersArray[iii] = lastUpdate;
return countersArray;
}
}
答案 1 :(得分:8)
问题在于,当您进行大量max_counter
操作时,会收到大量调用Arrays.fill
,这会使您的解决方案变慢。
您应该保留currentMax
和currentMin
:
max_counter
时,您只需设置currentMin = currentMax
。i
:
i - 1
的值小于或等于currentMin
,则将其设置为currentMin + 1
。最后,再次浏览计数器数组并将所有内容设置为currentMin
至currentMin
。
答案 2 :(得分:4)
我开发的另一种解决方案,可能值得考虑:http://codility.com/demo/results/demoM658NU-DYR/
答案 3 :(得分:4)
这是这个问题的100%解决方案。
// you can also use imports, for example:
// import java.math.*;
class Solution {
public int[] solution(int N, int[] A) {
int counter[] = new int[N];
int n = A.length;
int max=-1,current_min=0;
for(int i=0;i<n;i++){
if(A[i]>=1 && A[i]<= N){
if(counter[A[i] - 1] < current_min) counter[A[i] - 1] = current_min;
counter[A[i] - 1] = counter[A[i] - 1] + 1;
if(counter[A[i] - 1] > max) max = counter[A[i] - 1];
}
else if(A[i] == N+1){
current_min = max;
}
}
for(int i=0;i<N;i++){
if(counter[i] < current_min) counter[i] = current_min;
}
return counter;
}
}
答案 4 :(得分:1)
这是我的C ++解决方案,它在编码方面获得了100分。这个概念与上面解释的相同。
int maxx=0;
int lastvalue=0;
void set(vector<int>& A, int N,int X)
{
for ( int i=0;i<N;i++)
if(A[i]<lastvalue)
A[i]=lastvalue;
}
vector<int> solution(int N, vector<int> &A) {
// write your code in C++11
vector<int> B(N,0);
for(unsigned int i=0;i<A.size();i++)
{
if(A[i]==N+1)
lastvalue=maxx;
else
{ if(B[A[i]-1]<lastvalue)
B[A[i]-1]=lastvalue+1;
else
B[A[i]-1]++;
if(B[A[i]-1]>maxx)
maxx=B[A[i]-1];
}
}
set(B,N,maxx);
return B;
}
答案 5 :(得分:1)
我的 java 解决方案,其中带有详细的说明 100%正确,100%性能:
时间复杂度 O(N + M)
public static int[] solution(int N, int[] A) {
int[] counters = new int[N];
//The Max value between all counters at a given time
int max = 0;
//The base Max that all counter should have after the "max counter" operation happens
int baseMax = 0;
for (int i = 0; i < A.length; i++) {
//max counter Operation ==> updating the baseMax
if (A[i] > N) {
// Set The Base Max that all counters should have
baseMax = max;
}
//Verify if the value is bigger than the last baseMax because at any time a "max counter" operation can happen and the counter should have the max value
if (A[i] <= N && counters[A[i] - 1] < baseMax) {
counters[A[i] - 1] = baseMax;
}
//increase(X) Operation => increase the counter value
if (A[i] <= N) {
counters[A[i] - 1] = counters[A[i] - 1] + 1;
//Update the max
max = Math.max(counters[A[i] - 1], max);
}
}
//Set The remaining values to the baseMax as not all counters are guaranteed to be affected by an increase(X) operation in "counters[A[i] - 1] = baseMax;"
for (int j = 0; j < N; j++) {
if (counters[j] < baseMax)
counters[j] = baseMax;
}
return counters;
}
答案 6 :(得分:0)
这是我使用python 3.6的解决方案。结果是100%的正确性,但40%的性能(大多数是由于超时)。仍然无法弄清楚如何优化此代码,但希望有人能发现它有用。
def solution(N, A):
count = [0]*(N+1)
for i in range(0,len(A)):
if A[i] >=1 and A[i] <= N:
count[A[i]] += 1
elif A[i] == (N+1):
count = [max(count)] * len(count)
count.pop(0)
return count
答案 7 :(得分:0)
这一行增加了复杂性:
Arrays.fill(countersArray, currentMax);
解决方案是仅在处理时将计数器设置为最大值,最后添加一个最终循环以将所有内容与最后一个最大值对齐。
这是另一个得分为 %100 的 Java 解决方案:
https://app.codility.com/demo/results/trainingA83U7Y-ESQ/
public int[] solution(int N, int[] A) {
int[] counters = new int[N];
int max = 0;
int lastMaximization = 0;
for (int command : A) {
if (command < N + 1) {
int index = command - 1;
counters[index] = Math.max(lastMaximization, counters[index]) + 1;
max = Math.max(max, counters[index]);
} else {
lastMaximization = max;
}
}
for (int i = 0; i < counters.length; i++) {
counters[i] = Math.max(lastMaximization, counters[i]);
}
return counters;
}
答案 8 :(得分:0)
打字稿:
function counters(numCounters: number, operations: number[]) {
const counters = Array(numCounters)
let max = 0
let currentMin = 0
for (const operation of operations) {
if (operation === numCounters + 1) {
currentMin = max
} else {
if (!counters[operation - 1] || counters[operation - 1] < currentMin) {
counters[operation - 1] = currentMin
}
counters[operation - 1] = counters[operation - 1] + 1
if (counters[operation - 1] > max) {
max += 1
}
}
}
for (let i = 0; i < numCounters; i++) {
if (!counters[i] || counters[i] < currentMin) {
counters[i] = currentMin
}
}
return counters
}
console.log(solution=${counters(5, [3, 4, 4, 6, 1, 4, 4])}
)
答案 9 :(得分:0)
100点JavaScript解决方案,包括性能改进,可忽略重复的max_counter迭代:
function solution(N, A) {
let max = 0;
let counters = Array(N).fill(max);
let maxCounter = 0;
for (let op of A) {
if (op <= N && op >= 1) {
maxCounter = 0;
if (++counters[op - 1] > max) {
max = counters[op - 1];
}
} else if(op === N + 1 && maxCounter === 0) {
maxCounter = 1;
for (let i = 0; i < counters.length; i++) {
counters[i] = max;
}
}
}
return counters;
}
答案 10 :(得分:0)
我的Java解决方案。它给出了100%,但非常长(相比而言)。我已经使用HashMap来存储计数器。
检测到的时间复杂度:O(N + M)
import java.util.*;
class Solution {
final private Map<Integer, Integer> counters = new HashMap<>();
private int maxCounterValue = 0;
private int maxCounterValueRealized = 0;
public int[] solution(int N, int[] A) {
if (N < 1) return new int[0];
for (int a : A) {
if (a <= N) {
Integer current = counters.putIfAbsent(a, maxCounterValueRealized + 1);
if (current == null) {
updateMaxCounterValue(maxCounterValueRealized + 1);
} else {
++current;
counters.replace(a, current);
updateMaxCounterValue(current);
}
} else {
maxCounterValueRealized = maxCounterValue;
counters.clear();
}
}
return getCountersArray(N);
}
private void updateMaxCounterValue(int currentCounterValue) {
if (currentCounterValue > maxCounterValue)
maxCounterValue = currentCounterValue;
}
private int[] getCountersArray(int N) {
int[] countersArray = new int[N];
for (int j = 0; j < N; j++) {
Integer current = counters.get(j + 1);
if (current == null) {
countersArray[j] = maxCounterValueRealized;
} else {
countersArray[j] = current;
}
}
return countersArray;
}
}
答案 11 :(得分:0)
这是100%的python解决方案 Codility Max counter 100%
def solution(N, A):
"""
Solution at 100% - https://app.codility.com/demo/results/trainingUQ95SB-4GA/
Idea is first take the counter array of given size N
take item from main A one by one + 1 and put in counter array , use item as index
keep track of last max operation
at the end replace counter items with max of local or counter item it self
:param N:
:param A:
:return:
"""
global_max = 0
local_max = 0
# counter array
counter = [0] * N
for i, item in enumerate(A):
# take item from original array one by one - 1 - minus due to using item as index
item_as_counter_index = item - 1
# print(item_as_counter_index)
# print(counter)
# print(local_max)
# current element less or equal value in array and greater than 1
# if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
if N >= item >= 1:
# max of local_max counter at item_as_counter_index
# increase counter array value and put in counter array
counter[item_as_counter_index] = max(local_max, counter[item_as_counter_index]) + 1
# track the status of global_max counter so far
# this is operation K
global_max = max(global_max, counter[item_as_counter_index])
# if A[K] = N + 1 then operation K is max counter.
elif item == N + 1:
# now operation k is as local max
# here we need to replace all items in array with this global max
# we can do using for loop for array length but that will cost bigo n2 complexity
# example - for i, item in A: counter[i] = global_max
local_max = global_max
# print("global_max each step")
# print(global_max)
# print("local max so far....")
# print(local_max)
# print("counter - ")
# print(counter)
# now counter array - replace all elements which are less than the local max found so far
# all counters are set to the maximum value of any counter
for i, item in enumerate(counter):
counter[i] = max(item, local_max)
return counter
结果=解决方案(1,[3、4、4、6、1、4、4]) print(“ Sol” + str(result))
答案 12 :(得分:0)
O(N + M)获得100%的结果
class Solution {
public int[] solution(int N, int[] A) {
// write your code in Java SE 8
int max = 0;
int[] counter = new int[N];
int upgrade = 0;
for ( int i = 0; i < A.length; i++ )
{
if ( A[i] <= N )
{
if ( upgrade > 0 && upgrade > counter[A[i] - 1 ] )
{
counter[A[i] - 1] = upgrade;
}
counter[A[i] - 1 ]++;
if ( counter[A[i] - 1 ] > max )
{
max = counter[A[i] - 1 ];
}
}
else
{
upgrade = max;
}
}
for ( int i = 0; i < N; i++ )
{
if ( counter[i] < upgrade)
{
counter[i] = upgrade;
}
}
return counter;
}
}
答案 13 :(得分:0)
Java 100%/ 100%,无导入
public int[] solution(int N, int[] A) {
int[] counters = new int[N];
int currentMax = 0;
int sumOfMaxCounters = 0;
boolean justDoneMaxCounter = false;
for (int i = 0; i < A.length ; i++) {
if (A[i] <= N) {
justDoneMaxCounter = false;
counters[A[i]-1]++;
currentMax = currentMax < counters[A[i]-1] ? counters[A[i]-1] : currentMax;
}else if (!justDoneMaxCounter){
sumOfMaxCounters += currentMax;
currentMax = 0;
counters = new int[N];
justDoneMaxCounter = true;
}
}
for (int j = 0; j < counters.length; j++) {
counters[j] = counters[j] + sumOfMaxCounters;
}
return counters;
}
答案 14 :(得分:0)
python解决方案:100%100%
def solution(N, A):
c = [0] * N
max_element = 0
base = 0
for item in A:
if item >= 1 and N >= item:
c[item-1] = max(c[item-1], base) + 1
max_element = max(c[item - 1], max_element)
elif item == N + 1:
base = max_element
for i in range(N):
c[i] = max (c[i], base)
return c
pass
答案 15 :(得分:0)
使用applyMax记录最大操作数
时间复杂度: O(N + M)
class Solution {
public int[] solution(int N, int[] A) {
// write your code in Java SE 8
int max = 0, applyMax = 0;;
int[] result = new int[N];
for (int i = 0; i < A.length; ++i) {
int a = A[i];
if (a == N + 1) {
applyMax = max;
}
if (1 <= a && a <= N) {
result[A[i] - 1] = Math.max(applyMax, result[A[i] - 1]);
max = Math.max(max, ++result[A[i] - 1]);
}
}
for (int i = 0; i < N; ++i) {
if (result[i] < applyMax) {
result[i] = applyMax;
}
}
return result;
}
}
答案 16 :(得分:0)
这是分数为100%的c ++解决方案:
#include <algorithm>
#include <assert.h>
void increase(int N, std::vector<int>& counters, int minCounter, int& max){
//assert(N >= 1 && size_t(N - 1) < counters.size());
auto n = counters[N - 1];
counters[N - 1] = n <= minCounter ? minCounter + 1 : n + 1;
if(counters[N - 1] > max) {
max = counters[N - 1];
}
}
vector<int> solution(int N, vector<int> &A) {
auto minCounter = 0;
auto max = 0;
std::vector<int> counters(N, 0);
auto allEquals = true;
for(auto i : A) {
if(1 <= i && i <= N) {
increase(i, counters, minCounter, max);
allEquals = false;
} else if(i == N + 1 && !allEquals) {
minCounter = max;
allEquals = true;
}
}
for(auto& c : counters) {
c = std::max(c, minCounter);
}
return counters;
}
答案 17 :(得分:0)
我只想展示 77 % - 解决方案的样子:
public int[] solution(int N, int[] A) {
int K = 0;
int[] B = new int[N];
for (int a : A)
if (a > N) Arrays.fill(B, K);
else K = Math.max(K, ++B[a-1]);
return B;
}
答案 18 :(得分:0)
def sample_method(A,N=5):
initial_array = [0,0,0,0,0]
for i in A:
if(i>=1):
if(i<=N):
initial_array[i-1]+=1
else:
for a in range(len(initial_array)):
initial_array[a]+=1
print i
print initial_array
答案 19 :(得分:0)
这是我的python解决方案:
def solution(N, A):
# write your code in Python 3.6
RESP = [0] * N
MAX_OPERATION = N + 1
current_max = 0
current_min = 0
for operation in A:
if operation != MAX_OPERATION:
if RESP[operation-1] <= current_min:
RESP[operation-1] = current_min + 1
else:
RESP[operation-1] += 1
if RESP[operation-1] > current_max:
current_max = RESP[operation-1]
else:
if current_min == current_max:
current_min += 1
else:
current_min = current_max
for i, val in enumerate(RESP):
if val < current_min:
RESP[i] = current_min
return RESP
答案 20 :(得分:0)
在我的Java解决方案中,我仅在需要时更新了解决方案[]中的值。最后用正确的值更新了解决方案[]。
public int[] solution(int N, int[] A) {
int[] solution = new int[N];
int maxCounter = 0;
int maxCountersSum = 0;
for(int a: A) {
if(a >= 1 && a <= N) {
if(solution[a - 1] < maxCountersSum)
solution[a - 1] = maxCountersSum;
solution[a - 1]++;
if(solution[a - 1] > maxCounter)
maxCounter = solution[a - 1];
}
if(a == N + 1) {
maxCountersSum = maxCounter;
}
}
for(int i = 0; i < N; i++) {
if(solution[i] < maxCountersSum)
solution[i] = maxCountersSum;
}
return solution;
}
答案 21 :(得分:0)
我的解决方案是:
public class Solution {
public int[] solution(int N, int[] A) {
int[] counters = new int[N];
int[] countersLastMaxIndexes = new int[N];
int maxValue = 0;
int fixedMaxValue = 0;
int maxIndex = 0;
for (int i = 0; i < A.length; i++) {
if (A[i] <= N) {
if (countersLastMaxIndexes[A[i] - 1] != maxIndex) {
counters[A[i] - 1] = fixedMaxValue;
countersLastMaxIndexes[A[i] - 1] = maxIndex;
}
counters[A[i] - 1]++;
if (counters[A[i] - 1] > maxValue) {
maxValue = counters[A[i] - 1];
}
} else {
maxIndex = i;
fixedMaxValue = maxValue;
}
}
for (int i = 0; i < countersLastMaxIndexes.length; i++) {
if (countersLastMaxIndexes[i] != maxIndex) {
counters[i] = fixedMaxValue;
countersLastMaxIndexes[i] = maxIndex;
}
}
return counters;
}
}
答案 22 :(得分:0)
遵循我在JAVA(100/100)的解决方案。
public boolean isToSum(int value, int N) {
return value >= 1 && value <= N;
}
public int[] solution(int N, int[] A) {
int[] res = new int[N];
int max =0;
int minValue = 0;
for (int i=0; i < A.length; i++){
int value = A[i];
int pos = value -1;
if ( isToSum(value, N)) {
if( res[pos] < minValue) {
res[pos] = minValue;
}
res[pos] += 1;
if (max < res[pos]) {
max = res[pos];
}
} else {
minValue = max;
}
}
for (int i=0; i < res.length; i++){
if ( res[i] < minValue ){
res[i] = minValue;
}
}
return res;
}
答案 23 :(得分:0)
Arrays.fill()
调用使程序为O(N ^ 2)
Here是一种可能的解决方案,它具有O(M + N)运行时。
这个想法是 -
对于第二个操作,跟踪通过增量实现的最大值,这是我们的基值直到当前迭代,没有值不能小于此值。
对于第一个操作,如果需要,请在增量之前将值重置为基值。
public static int [] solution(int N,int [] A){ int counters [] = new int [N];
int base = 0;
int cMax = 0;
for (int a : A) {
if (a > counters.length) {
base = cMax;
} else {
if (counters[a - 1] < base) {
counters[a - 1] = base;
}
counters[a - 1]++;
cMax = Math.max(cMax, counters[a - 1]);
}
}
for (int i = 0; i < counters.length; i++) {
if (counters[i] < base) {
counters[i] = base;
}
}
return counters;
}
答案 24 :(得分:0)
vector<int> solution(int N, vector<int> &A)
{
std::vector<int> counters(N);
auto max = 0;
auto current = 0;
for (auto& counter : A)
{
if (counter >= 1 && counter <= N)
{
if (counters[counter-1] < max)
counters[counter - 1] = max;
counters[counter - 1] += 1;
if (counters[counter - 1] > current)
current = counters[counter - 1];
}
else if (counter > N)
max = current;
}
for (auto&& counter : counters)
if (counter < max)
counter = max;
return counters;
}
答案 25 :(得分:0)
100%,O(m + n)
public int[] solution(int N, int[] A) {
int[] counters = new int[N];
int maxAIs = 0;
int minAShouldBe = 0;
for(int x : A) {
if(x >= 1 && x <= N) {
if(counters[x-1] < minAShouldBe) {
counters[x-1] = minAShouldBe;
}
counters[x-1]++;
if(counters[x-1] > maxAIs) {
maxAIs = counters[x-1];
}
} else if(x == N+1) {
minAShouldBe = maxAIs;
}
}
for(int i = 0; i < N; i++) {
if(counters[i] < minAShouldBe) {
counters[i] = minAShouldBe;
}
}
return counters;
}
答案 26 :(得分:0)
这是解决该问题的另一种C ++解决方案。
理由总是一样的。
这里是代码:
vector<int> MaxCounters(int N, vector<int> &A)
{
vector<int> n(N, 0);
int globalMax = 0;
int localMax = 0;
for( vector<int>::const_iterator it = A.begin(); it != A.end(); ++it)
{
if ( *it >= 1 && *it <= N)
{
// this is an increase op.
int value = *it - 1;
n[value] = std::max(n[value], localMax ) + 1;
globalMax = std::max(n[value], globalMax);
}
else
{
// set max counter op.
localMax = globalMax;
}
}
for( vector<int>::iterator it = n.begin(); it != n.end(); ++it)
*it = std::max( *it, localMax );
return n;
}
答案 27 :(得分:0)
我在PHP中获得了100分,并得到了上述
的帮助function solution($N, $A) {
$B = array(0);
$max = 0;
foreach($A as $key => $a) {
$a -= 1;
if($a == $N) {
$max = max($B);
} else {
if(!isset($B[$a])) {
$B[$a] = 0;
}
if($B[$a] < $max) {
$B[$a] = $max + 1;
} else {
$B[$a] ++;
}
}
}
for($i=0; $i<$N; $i++) {
if(!isset($B[$i]) || $B[$i] < $max) {
$B[$i] = $max;
}
}
return $B;
}
答案 28 :(得分:0)
我正在添加另一个Java 100解决方案,其中包含一些有用的测试用例。
// https://codility.com/demo/results/demoD8J6M5-K3T/ 77
// https://codility.com/demo/results/demoSEJHZS-ZPR/ 100
public class MaxCounters {
// Some testcases
// (1,[1,2,3]) = [1]
// (1,[1]) = [1]
// (1,[5]) = [0]
// (1,[1,1,1,2,3]) = 3
// (2,[1,1,1,2,3,1]) = [4,3]
// (5, [3, 4, 4, 5, 1, 4, 4]) = (1, 0, 1, 4, 1)
public int[] solution(int N, int[] A) {
int length = A.length, maxOfCounter = 0, lastUpdate = 0;
int applyMax = N + 1;
int result[] = new int[N];
for (int i = 0; i < length; ++i ) {
if(A[i] == applyMax){
lastUpdate = maxOfCounter;
} else if (A[i] <= N) {
int position = A[i]-1;
result[position] = result[position] > lastUpdate
? result[position] + 1 : lastUpdate + 1;
// updating the max for future use
if(maxOfCounter <= result[position]) {
maxOfCounter = result[position];
}
}
}
// updating all the values that are less than the lastUpdate to the max value
for (int i = 0; i < N; ++i) {
if(result[i] < lastUpdate) {
result[i] = lastUpdate;
}
}
return result;
}
}
答案 29 :(得分:0)
Hera是我的AC Java解决方案。这个想法与@Inwvr解释的相同:
public int[] solution(int N, int[] A) {
int[] count = new int[N];
int max = 0;
int lastUpdate = 0;
for(int i = 0; i < A.length; i++){
if(A[i] <= N){
if(count[A[i]-1] < lastUpdate){
count[A[i]-1] = lastUpdate+1;
}
else{
count[A[i]-1]++;
}
max = Math.max(max, count[A[i]-1]);
}
else{
lastUpdate = max;
}
}
for(int i = 0; i < N; i++){
if(count[i] < lastUpdate)
count[i] = lastUpdate;
}
return count;
}
答案 30 :(得分:0)
vector<int> solution(int N, vector<int> &A)
{
std::vector<int> counter(N, 0);
int max = 0;
int floor = 0;
for(std::vector<int>::iterator i = A.begin();i != A.end(); i++)
{
int index = *i-1;
if(*i<=N && *i >= 1)
{
if(counter[index] < floor)
counter[index] = floor;
counter[index] += 1;
max = std::max(counter[index], max);
}
else
{
floor = std::max(max, floor);
}
}
for(std::vector<int>::iterator i = counter.begin();i != counter.end(); i++)
{
if(*i < floor)
*i = floor;
}
return counter;
}
答案 31 :(得分:-1)
JAVA(100/100)中的解决方案
class Solution {
public int[] solution(int N, int[] A) {
// write your code in Java SE 8
int[] result = new int[N];
int base = 0;
int max = 0;
int needToChange=A.length;;
for (int k = 0; k < A.length; k++) {
int X = A[k];
if (X >= 1 && X <= N) {
if (result[X - 1] < base) {
result[X - 1] = base;
}
result[X - 1]++;
if (max < result[X - 1]) {
max = result[X - 1];
}
}
if (X == N + 1) {
base = max;
needToChange= X-1;
}
}
for (int i = 0; i < needToChange; i++) {
if (result[i] < base) {
result[i] = base;
}
}
return result;
}
}