我有以下python代码:
H1 = [[0.04,0.03,0.01,0.002],[0.02,0.04,0.001,0.5]]
H2 = [[0.06,0.02,0.02,0.004],[0.8,0.09,0.6,0.1]]
D1 = [0.01,0.02,0.1,0.01]
D2 = [0.1,0.3,0.01,0.4]
Tp = np.sum(D1)
Tn = np.sum(D2)
T = []
append2 = T.append
E = []
append3 = E.append
for h1,h2 in itertools.izip(H1,H2)
Err = []
append1 = Err.append
for v in h1:
L1 = [1 if i>=v else 0 for i in h1]
L2 = [1 if i>=v else 0 for i in h2]
Sp = np.dot(D1,L1)
Sn = np.dot(D2,L2)
err = min(Sp+Tn-Sn, Sn+Tp-Sp)
append1(err)
b = np.argmin(Err)
append2(h1[b])
append3(Err[b])
这只是一个示例代码。我需要运行内部for循环大约20,000次(这里只运行两次)。但是内部for循环需要花费很多时间才能使它变得不实用。
在线条分析器中,它显示行Sp = np.dot(D1,L1)
,Sn = np.dot(D2,L2)
和b = np.argmin(Err)
是最耗时的。
如何减少上述代码所花费的时间。
非常感谢任何帮助。
谢谢!
答案 0 :(得分:3)
如果使用numpy函数而不是列表,那么你可以获得相当大的速度提升。大多数numpy函数会在内部将列表转换为数组,这会给运行时增加很多开销。这是一个简单的例子:
In [16]: a = range(10)
In [17]: b = range(10)
In [18]: aa = np.array(a)
In [19]: bb = np.array(b)
In [20]: %timeit np.dot(a, b)
10000 loops, best of 3: 54 us per loop
In [21]: %timeit np.dot(aa, bb)
100000 loops, best of 3: 3.4 us per loop
在这种情况下,使用数组调用时, numpy.dot
运行速度提高了16倍。此外,当您使用numpy数组时,您将能够简化一些代码,这也有助于它更快地运行。例如,如果h1
是一个数组,L1 = [1 if i>=v else 0 for i in h1]
可以写成h1 > v
,它返回一个数组,并且运行得更快。 Bellow我已经继续使用数组替换你的列表,这样你就可以看到它的外观。
import numpy as np
H1 = np.array([[0.04,0.03,0.01,0.002],[0.02,0.04,0.001,0.5]])
H2 = np.array([[0.06,0.02,0.02,0.004],[0.8,0.09,0.6,0.1]])
D1 = np.array([0.01,0.02,0.1,0.01])
D2 = np.array([0.1,0.3,0.01,0.4])
Tp = np.sum(D1)
Tn = np.sum(D2)
T = np.zeros(H1.shape[0])
E = np.zeros(H1.shape[0])
for i in range(len(H1)):
h1 = H1[i]
h2 = H2[i]
Err = np.zeros(len(h1))
for j in range(len(h1)):
v = h1[j]
L1 = h1 > v
L2 = h2 > v
Sp = np.dot(D1, L1)
Sn = np.dot(D2, L2)
err = min(Sp+Tn-Sn, Sn+Tp-Sp)
Err[j] = err
b = np.argmin(Err)
T[i] = h1[b]
E[i] = Err[b]
一旦你对numpy数组更加熟悉,你可能希望使用broadcasting来表达至少你的内部循环。对于某些应用程序,使用广播可以比python循环更有效。祝你好运,希望有所帮助。
答案 1 :(得分:1)
你的列表理解中有一些悬而未决的成果:
L1 = [1 if i>=v else 0 for i in h1]
L2 = [1 if i>=v else 0 for i in h2]
以上内容可以写成:
L1 = [i>=v for i in h1]
L2 = [i>=v for i in h2]
因为布尔值是整数的子类,True
和False
已经是1和0,只穿着华丽的衣服。
err = min(Sp+Tn-Sn, Sn+Tp-Sp)
append1(err)
您可以合并上述两行以避免变量分配和访问。
如果将代码放在函数中,则所有局部变量的使用速度会稍快一些。此外,您使用的任何全局函数或方法(例如min
,np.dot
)都可以使用默认参数转换为函数签名中的本地函数。 np.dot
是一个特别慢的调用(在操作本身需要的时间之外),因为它涉及属性查找。这与您使用列表append
方法进行的优化类似。
现在我想象这一切都不会真正影响性能,因为你的问题似乎真的是“我怎样才能让NumPy变得更快?” (其他人对你而言最重要)但他们可能会有一些影响,值得做。
答案 2 :(得分:1)
您需要将数据保存在ndarray类型中。在列表上执行numpy操作时,每次都必须构造一个新数组。我修改了你的代码以运行可变次数,并发现10000次迭代也是1s。将数据类型更改为ndarrays减少了大约两倍,我认为仍然有一些改进(第一个版本有一个错误导致它执行得太快)
import itertools
import numpy as np
N = 10000
H1 = [np.array([0.04,0.03,0.01,0.002])] * N
H2 = [np.array([0.06,0.02,0.02,0.004])] * N
D1 = np.array([0.01,0.02,0.1,0.01] )
D2 = np.array([0.1,0.3,0.01,0.4] )
Tp = np.sum(D1)
Tn = np.sum(D2)
T = []
append2 = T.append
E = []
append3 = E.append
for h1,h2 in itertools.izip(H1,H2):
Err = []
append1 = Err.append
for v in h1:
#L1 = [1 if i>=v else 0 for i in h1]
#L2 = [1 if i>=v else 0 for i in h2]
L1 = h1 > v
L2 = h2 > v
Sp = np.dot(D1,L1)
Sn = np.dot(D2,L2)
err = min(Sp+Tn-Sn, Sn+Tp-Sp)
append1(err)
b = np.argmin(Err)
append2(h1[b])
append3(Err[b])
答案 3 :(得分:0)
如果我在两个维度列表1中正确理解了指令np.dot()
的内容,那么在我看来,以下代码应该与您的相同。
你能测试它的速度吗?
它的原则是使用索引而不是列表元素,并使用定义为函数默认值的列表的特性
H1 = [[0.04,0.03,0.01,0.002],[0.02,0.04,0.001,0.5]]
H2 = [[0.06,0.02,0.02,0.004],[0.8,0.09,0.6,0.1]]
D1 = [0.01,0.02,0.1,0.01]
D2 = [0.1,0.3,0.01,0.4]
Tp = np.sum(D1)
Tn = np.sum(D2)
T,E = [],[]
append2 = T.append
append3 = E.append
ONE,TWO = [],[]
def zoui(v, ONE=ONE,TWO=TWO,
D1=D1,D2=D2,Tp=Tp,Tn=Tn,tu0123 = (0,1,2,3)):
diff = sum(D1[i] if ONE[i]>=v else 0 for i in tu0123)\
-sum(D2[i] if TWO[i]>=v else 0 for i in tu0123)
#or maybe
#diff = sum(D1[i] * ONE[i]>=v for i in tu0123)\
# -sum(D2[i] * TWO[i]>=v for i in tu0123)
return min(Tn+diff,Tp-diff)
for n in xrange(len(H1)):
ONE[:] = H1[n]
TWO[:] = H2[n]
Err = map(zoui,ONE)
b = np.argmin(Err)
append2(ONE[b])
append3(Err[b])