在java中使用FFT的图像增强

时间:2013-10-11 13:48:26

标签: java math image-processing fft image-enhancement

我正在使用快速傅立叶变换进行指纹图像增强。我从this网站得到了这个想法。

我已使用32 * 32窗口实现了FFT功能,在推荐网站建议之后,我想将power spectrumFFT相乘。但我没有,

如何计算图像的功率谱?或者Power Spectrum有什么理想的价值吗?

FFT代码:

public FFT(int[] pixels, int w, int h) {
    // progress = 0;
    input = new TwoDArray(pixels, w, h);
    intermediate = new TwoDArray(pixels, w, h);
    output = new TwoDArray(pixels, w, h);
    transform();
}

  void transform() {
    for (int i = 0; i < input.size; i+=32) {
        for(int j = 0; j < input.size; j+=32){

            ComplexNumber[] cn = recursiveFFT(input.getWindow(i,j));
            output.putWindow(i,j, cn);
        }
    }
    for (int j = 0; j < output.values.length; ++j) {
        for (int i = 0; i < output.values[0].length; ++i) {
            intermediate.values[i][j] = output.values[i][j];
            input.values[i][j] = output.values[i][j];
        }
    }
}

static ComplexNumber[] recursiveFFT(ComplexNumber[] x) {
 int N = x.length;
    // base case
    if (N == 1) return new ComplexNumber[] { x[0] };

    // radix 2 Cooley-Tukey FFT
    if (N % 2 != 0) { throw new RuntimeException("N is not a power of 2"); }

    // fft of even terms
    ComplexNumber[] even = new ComplexNumber[N/2];
    for (int k = 0; k < N/2; k++) {
        even[k] = x[2*k];
    }
    ComplexNumber[] q = recursiveFFT(even);

    // fft of odd terms
    ComplexNumber[] odd  = even;  // reuse the array
    for (int k = 0; k < N/2; k++) {
        odd[k] = x[2*k + 1];
    }
    ComplexNumber[] r = recursiveFFT(odd);

    // combine
    ComplexNumber[] y = new ComplexNumber[N];
    for (int k = 0; k < N/2; k++) {
        double kth = -2 * k * Math.PI / N;
        ComplexNumber wk = new ComplexNumber(Math.cos(kth), Math.sin(kth));
        ComplexNumber tmp = ComplexNumber.cMult(wk, r[k]);
        y[k] = ComplexNumber.cSum(q[k], tmp);

        ComplexNumber temp = ComplexNumber.cMult(wk, r[k]);
        y[k + N/2] = ComplexNumber.cDif(q[k], temp);
    }
    return y;
}

1 个答案:

答案 0 :(得分:0)

我认为功率谱是傅里叶变换输出的平方。

power@givenFrequency = x(x*) where x* is the complex conjugate

图像块中的总功率将是所有频率和空间的总和。

我不知道这是否有帮助。