据我所知,我可以使用LibSVM从一组数据训练产生的模型中解析支持向量。
生成分类器的公式是什么?
我是否需要文件标题中的数据,如下所示(内核等...在列出的支持向量之前):
svm_type c_svc
kernel_type rbf
gamma 0.125
nr_class 4
total_sv 1038
rho -0.859244 -0.876628 -0.958343 0.543365 -1.10722 -1.79433
label 2 1 3 0
nr_sv 364 276 242 156
SV
我的情况是
感谢。
答案 0 :(得分:1)
您应该能够将C函数转换为Javascript。
以下是相关代码:
double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
{
int i;
int nr_class = model->nr_class;
int l = model->l;
double *kvalue = Malloc(double,l);
for(i=0;i<l;i++)
kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
int *start = Malloc(int,nr_class);
start[0] = 0;
for(i=1;i<nr_class;i++)
start[i] = start[i-1]+model->nSV[i-1];
int *vote = Malloc(int,nr_class);
for(i=0;i<nr_class;i++)
vote[i] = 0;
int p=0;
for(i=0;i<nr_class;i++)
for(int j=i+1;j<nr_class;j++)
{
double sum = 0;
int si = start[i];
int sj = start[j];
int ci = model->nSV[i];
int cj = model->nSV[j];
int k;
double *coef1 = model->sv_coef[j-1];
double *coef2 = model->sv_coef[i];
for(k=0;k<ci;k++)
sum += coef1[si+k] * kvalue[si+k];
for(k=0;k<cj;k++)
sum += coef2[sj+k] * kvalue[sj+k];
sum -= model->rho[p];
dec_values[p] = sum;
if(dec_values[p] > 0)
++vote[i];
else
++vote[j];
p++;
}
int vote_max_idx = 0;
for(i=1;i<nr_class;i++)
if(vote[i] > vote[vote_max_idx])
vote_max_idx = i;
free(kvalue);
free(start);
free(vote);
return model->label[vote_max_idx];
}
请注意,您必须重新创建此等式:
唯一的区别是因为你的模型有4个类,你需要实现投票系统,这基本上就是上面的代码。
希望它有所帮助。