用户定义函数(dist.func)运行并在我在单行数据上使用时提供正确的输出,但在将其嵌入apply()命令时不提供正确的输出(仍然执行)。在这种情况下,我想按行计算。
包含复杂样本数据的道歉,但值必须在阈值范围内才能返回有意义的输出,这是确保发生这种情况的最简单方法。
library(fields)
该函数实质上是在XY坐标(使用rdist()命令的欧几里德距离)之间进行测量,但它首先采用数据的子集,仅保留属于给定相似度(欧几里德距离)之间的'TO'数据的那些行。第一和第二主要组成部分,PC1和PC2)。
这样就产生了样本数据:
# This data is the reference points to measure FROM
FROM <- data.frame(X=c(-4187500,-4183500,-4155500,-4179500,-2883500),
Y=c(10092500,10084500,10020500,10012500,9232500),
PC1=c(-0.525,-0.506,-1.146,-0.733,-1.160),
PC2=c(3.606,3.609,4.114,3.681,0.882))
# This data is the destination points to measure TO
TO <- data.frame(X=c(-4207500,-4183500,-4203500,-4187500,-2827500,-4203500,-4199500,-4183500,-4195500,-4191500),
Y=c(10100500,10100500,10096500,10092500,10092500,10088500,10084500,10084500,10072500,10064500),
PC1=c(-0.371,0.447,-0.344,-0.026,-0.652,-0.460,-0.313,0.010,-0.293,-0.319 ),
PC2=c(3.149,4.619,3.318,3.885,0.407,3.164,3.300,3.892,3.226,3.337))
# This is the threshold of the data similarity match (distance between PC1 and PC2 in both data sets)
threshold <- 0.5
这是我的用户定义函数(解释了每一行):
dist.func <- function(REF){
# Calculate the similarity (PC1 and PC2 distance) to all points in the destination
# Select only those under the threshold
bt <- as.matrix(TO[(rdist(REF[3:4],TO[3:4])[1,]<threshold)==T,c("X","Y")])
# Calculate the number of points under the threshold (the "sample size")
# If there are no points uder the threshold, the SS is set to zero (otherwise 'NA' kills the loop)
ss <- ifelse(nrow(bt)>=50, 50 ,nrow(bt))
# If/else to deal with SS=0
if (nrow(bt)>0) {
# Calculate the euclidian distance between the reference point and all points under the threshold
# This calculates the distances, sorts them in ascending order, and trims to the sample size
dst <- rdist(REF[1:2],bt)[1,][order(rdist(REF[1:2],bt)[1,])][1:ss]
} else {
dst <- c(NA)
}
# Report (in a list or table or whatever) the summary stats for the distances
list(
p05=ifelse(nrow(bt)==0, NA, quantile(dst,0.05)),
MIN=ifelse(nrow(bt)==0, NA, min(dst)),
AVG=ifelse(nrow(bt)==0, NA, mean(dst)),
N=ifelse(nrow(bt)==0, 0, nrow(bt)))
}
这是使用FROM数据(工作)的单行测试并嵌入到apply()命令中(不返回正确的值):
# Using the function on a single line of data returns correct values for the given line
dist.func(FROM[1,])
# Embedding the function into apply() returns incorrect outputs
# I'm committed to using apply() here (or some variant) to avoid a for() loop by rows
apply(FROM, 1, dist.func)
我对用户定义的功能相当新,所以如果那就是问题所在,那么任何建议都会受到重视。另外,如果有一种方法可以使函数或代码更有效(我不熟悉的软件包),那也是最受欢迎的。
答案 0 :(得分:4)
问题是apply
会将FROM
转换为矩阵。比较:
> dist.func(FROM[1,])
$p05
[1] 14939.76
$MIN
[1] 14422.21
$AVG
[1] 19795.44
$N
[1] 6
> dist.func(as.matrix(FROM)[1,])
$p05
[1] 1400
$MIN
[1] 1e-10
$AVG
[1] 179500
$N
[1] 8
> apply(FROM, 1, dist.func)[[1]]
$p05
[1] 1400
$MIN
[1] 1e-10
$AVG
[1] 179500
$N
[1] 8
答案 1 :(得分:2)
lapply
提供正确的输出
my.list<-as.list(1:nrow(FROM))
k- lapply(my.list,function(i)dist.func(FROM[i,])
kk<-do.call(rbind,k) # convert to data.frame
sapply(my.list,function(i)dist.func(FROM[i,]))
[,1] [,2] [,3] [,4] [,5]
p05 14939.76 16242.64 NA NA NA
MIN 14422.21 16000 NA NA NA
AVG 19795.44 21179.25 NA NA NA
N 6 6 0 0 0