我正在尝试在文本文件和CSV之间进行三个交叉匹配,以匹配3个元素,并且作为每个匹配的结果,我们将调用/获取要附加到字符串的某些元素... < / p>
文本文件项应分为两行/n/n
Textfile item line 1
应匹配CSV Element 2
中的一行
Textfile item line 2
应该匹配CSV Element 1
如果两场比赛都成功,则需要匹配学生姓名,第一种情况是“Tommy”与CSV Element 9
一旦所有三个变量匹配,我们知道我们匹配的行CSV行,现在我们需要记录CSV Element 10
,我们还需要从文本文件项中找到“数据2”
我们需要再次为接下来的几个名字,在我们的第一个例子中,它是Jim,Elz M和Ben
在运行脚本结束时,我应该可以执行以下操作:
print Match1[0], Match3[0], Match1[0], Data1[0], Data2[0]
print Match1[1], Match3[1], Match1[1], Data1[1]
print Match1[2], Match3[2], Match1[2], Data1[2]
哪个会输出:
DMATCH1 MData (N/A) Tommy 55 Data2 $10.40
DMATCH1 MData (N/A) Jim 52
DMATCH1 MData (N/A) Elz M 22
我的CSV看起来像:
MATCH1,MATCH2,TITLE,TITLE,TITLE,TITLE,TITLE,TITLE,MATCH3,DATA,TITLE,TITLE
DMATCH1,MData (N/A),data,data,data,data,data,data,Tommy,55,data,data
DMATCH1,MData (N/A),data,data,data,data,data,data,Ben,54,data,data
DMATCH1,MData (N/A),data,data,data,data,data,data,Jim,52,data,data
DMATCH1,MData (N/A),data,data,data,data,data,data,Elz M,22,data,data
DMATCH2,MData (B/B),data,data,data,data,data,data,James Smith,15,data,data
DMATCH2,MData (B/B),data,data,data,data,data,data,Jessica Long,224,data,data
DMATCH2,MData (B/B),data,data,data,data,data,data,Mike,62,data,data
DMATCH3,Mdata,data,data,data,data,data,data,Joe Reane,66,data,data
DMATCH3,Mdata,data,data,data,data,data,data,Peter Jones,256,data,data
DMATCH3,Mdata,data,data,data,data,data,data,Lesley Lope,5226,data,data
我的文本文件包含:
MData (N/A)
DMATCH1
3 Tommy 144512/23332
1 Jim 90000/222311
1 Elz M 90000/222311
1 Ben 90000/222311
Data $50.90
Data2 $10.40
Data3 $20.20
MData (B/B)
DMATCH2
4 James Smith 2333/114441
4 Mike 90000/222311
4 Jessica Long 2333/114441
Data $50.90
Data2 $5.44
Mdata
DMATCH3
5 Joe Reane 0/0
5 Peter Jones 90000/222311
Data $10.91
Data2 $420.00
Data3 $210.00
如果它更容易我可以修改文本文件,因此它也是csv格式
示例:
MData (N/A),DMATCH1,3 Tommy 144512/23332,1 Jim 90000/222311,1 Elz M 90000/222311, 1 Ben 90000/222311,Data $50.90,Data2 $10.40,Data3 $20.20
答案 0 :(得分:1)
这将是我的尝试:
from collections import defaultdict
import re
# Nested defaultdict for data structure
def make_map():
def make_map_dict():
return defaultdict(dict)
return defaultdict(make_map_dict)
# Read in the data
with open('/path/to/your/txt_file.txt', 'r') as f:
txt_data = [map(str.strip, x.split('\n')) for x in map(str.strip, f.read().split('\n\n')) if x]
with open('/path/to/your/csv_file.csv', 'r') as f:
header = f.readline()
csv_data = [map(str.strip, x.split(',')) for x in map(str.strip, f.read().split('\n')) if x]
# Generate a mapping dictionaries
txt_map = defaultdict(make_map)
csv_map = defaultdict(make_map)
# Regex matches
name_re = re.compile(r'^(\d+) +(\w+(?: \w+)*) +(\d+/\d+)$')
data_re = re.compile(r'^(Data(?:\d+)?) +(\$\d+(?:\.\d{2})?)$')
# Make txt mapping
for datapoint in txt_data:
names = [name_re.match(x).group(2) for x in datapoint[2:] if name_re.match(x)]
data = {data_re.match(x).group(1): data_re.match(x).group(2) for x in datapoint[2:] if data_re.match(x)}
for name in names:
txt_map[datapoint[1]][datapoint[0]][name] = data
# Make csv mapping
for datapoint in csv_data:
csv_map[datapoint[0]][datapoint[1]][datapoint[8]] = [datapoint[9]]
# Merge maps
final_map = defaultdict(make_map)
for x in txt_map:
for y in txt_map[x]:
for z in txt_map[x][y]:
if csv_map[x][y][z] is not None:
final_map[x][y][z] = csv_map[x][y][z] + [txt_map[x][y][z]]
# You now have final_map to do with what you will
这将为您提供嵌套的数据结构。如果需要,你可以展平并zip
。希望它有所帮助!